УДК 534.222.2

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ МНОГОСЛОЙНЫХ КАМЕР ПРИ ВНУТРЕННЕМ ВЗРЫВЕ

Ц.-Я. Чжэн¹, Г.-Д. Дэн¹, Ю.-Ц. Чэнь¹, Г.-Ю. Сунь¹, Ю.-Л. Ху², Л.-М. Чжао³, Ц.-М. Ли⁴

Проведены испытания трех многослойных камер, изготовленных из одних и тех же материалов, имеющих одинаковые размеры, но отличающихся углами намотки стальных лент. Исследовались динамический отклик и характеристики разрушения камер при взрыве заряда ТНТ, размещенного в центре полости. Все камеры были разрушены вблизи места расположения заряда взрывчатого вещества. Как показали результаты экспериментов, камера с меньшим углом намотки лент лучше выдерживает внутренний взрыв. При этом в продольном направлении стальных лент существуют в основном растягивающие напряжения, а в поперечном — сжимающие.

Ключевые слова: механика взрыва, динамический отклик, многослойная камера, взрывозащитная камера, взрывное нагружение, камера давления.

ВВЕДЕНИЕ

Взрывозащитные камеры (ВЗК) используются достаточно широко. В военном деле они применяются для ограничения воздействия взрывных волн и продуктов взрыва, защиты персонала и экспериментальной аппаратуры, предотвращения загрязнения окружающей среды и сохранения остатков детонационных экспериментов. ВЗК используются во взрывных экспериментах, для хранения и транспортировки ядерных и химических боеприпасов, утилизации устаревших боеприпасов и т. д. В промышленности ВЗК служат защитным оборудованием при сварке взрывом, взрывном прессовании и трамбовке. ВЗК необходимы и в антитеррористической деятельности — для локализации подозрительных взрывчатых веществ (ВВ) в общественных местах, таких как вокзалы и аэропорты.

Исследование моноблочных сферических и цилиндрических ВЗК проводилось начиная с 1950 г., и накоплен большой материал по их динамическому поведению [1–6]*. Многослойные ВЗК, напротив, изучены намного меньше.

Многослойные камеры состоят из нижней и верхней крышек, тонкой внутренней оболочки и слоистой оболочки, представляющей собой плоские стальные ленты, перекрестноспирально намотанные на внутреннюю оболочку. Такая конструкция дает много преимуществ: гибкость в конструировании, удобство изготовления, безопасность в использовании, широкое применение и простоту контроля при обслуживании [7]. Теоретический анализ и промышленное использование показали, что эти камеры хорошо выдерживают статическое давление [8–10]. Использование многослойных камер в качестве взрывозащитных позволяет избавиться от таких недостатков больших моно-

¹Институт химического оборудования, Чжэйанский университет, Ханчжоу 310027, Чжэйан, Китайская Народная Республика, jyzh@zju.edu.cn

²Северо-западный институт ядерных технологий, Сийань 710024, Шаньси, КНР

³Институт прикладной механики, Тайюаньский технологический университет, Тайюань 030024, Шаньси, КНР

 $^{^4}$ Школа механики Отделения аэрокосмической и гражданской техники, Манчестер М60 1QD, Великобритания

J.-Y. Zheng $^1,~G.-D.~Deng^1,~Y.-J.~Chen^1,~G.-Y.~Sun^1,~Y.-L.~Hu^2,~L.-M.~Zhao^3,~Q.-M.~Li^4.$

¹Institute of Chemical Machinery, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.

²Northwest Institute of Nuclear Technology, Xi'an 710024, Shanxi, P. R. China.

³Institute of Applied Mechanics, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China.

⁴School of Mechanical, Aerospace and Civil Engng, PO BOX 88, Manchester M60 1QD, UK.

^{*} От редакции. Изучению поведения взрывозащитных камер (в том числе многослойных и композитных) в отечественной литературе посвящено много работ. Общирная библиография по этому вопросу приведена в обзоре А. Г. Федоренко, М. А. Сырунина, А. Г. Иванова «Критерии выбора композитных материалов для оболочечных конструкций, локализующих взрыв», опубликованном в журнале «Физика горения и взрыва», 2005, т. 41, № 5.

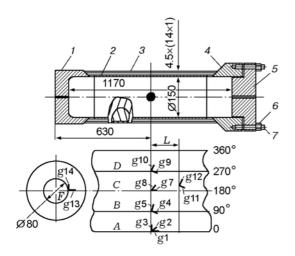


Рис. 1. Схема экспериментальных камер и расположение тензодатчиков:

1— нижняя крышка, 2— тонкая внутренняя оболочка, 3— слоистая оболочка, 4— торцевой фланец, 5— верхняя крышка, 6— гайка, 7— шпиль-

блочных толстостенных ВЗК, как трудности в изготовлении, высокая стоимость, неопределенность качества очень толстых стальных листов, штамповка и глубокие сварные швы.

Недавно в работах [11, 12] теоретически проанализировано динамическое поведение многослойных цилиндров при внутреннем взрывном нагружении. Для того чтобы детальнее исследовать их динамическое поведение и характеристики разрушения, мы провели серию взрывных экспериментов с тремя многослойными взрывозащитными камерами.

ЭКСПЕРИМЕНТАЛЬНЫЕ КАМЕРЫ И СИСТЕМА ИСПЫТАНИЙ

Схема экспериментальных камер показана на рис. 1. Внутренняя оболочка с внутренним диаметром 150 мм и толщиной стенки 4.5 мм приварена к нижней крышке и выходному фланцу. Слоеная оболочка состоит из 14 слоев, каждый их которых содержит 4 ÷ 8 стальных лент шириной 20 мм и толщиной 1 мм, спирально намотанных на внутреннюю оболочку под углом намотки θ к направлению окружности внутренней оболочки. Ленты смежных слоев намотаны в противоположном направлении, чтобы избежать скручивания. Два конца стальных лент приварены к заостренным под углом 45° торцам нижней крышки и выходного фланца, который соединяется с верхней крышкой при помощи болтов.

Внутренняя оболочка выполнена из углеродистой стали Ст. 20, стальные ленты — из Q195. Нижняя и верхняя крышки, а также фланец выкованы из стали 16Mn. Камеры I, II и III различались углами намотки — 10, 15 и 20° соответственно. Полная масса каждой камеры $\approx 140~\rm kr$.

Система измерения включала в себя тензодатчики, систему синхронизации, цифровые запоминающие осциллографы (максимальная частота дискретизации 100 МГц), высокоскоростную камеру и компьютер.

Как показано на рис. 1, измерения проводились в шести точках каждой камеры. Точки A, B, C и D располагались в центре внешних (наиболее удаленных от оси камеры) стальных лент, точка E находилась на той же самой стальной ленте, что и точка B, но была смещена вдоль осевой линии на расстояние L(для камер I и II L=288 мм, для камеры III L = 196 мм); точка F располагалась на нижней крышке. В точках A и C были приклеены трехмерные тензодатчики ортогональные решетки которых расположены вдоль осевого и окружного направлений внутренней оболочки. В остальных точках помещали двумерные тензодатчики: в точках B, D и E их устанавливали так, чтобы получить деформацию в направлении длины и ширины стальных лент, в точке F — радиальную и окружную деформа-

В качестве ВВ использовали насыпной ТНТ. Сначала ВВ подпрессовывали, до плотности ≈ 1 г/см³, в прочный бумажный цилиндр, высота которого примерно равна его диаметру, затем по оси цилиндра вводили детонатор. Цилиндр устанавливали на прочную бумажную подставку, расположенную в центре полости камеры.

РЕЗУЛЬТАТЫ

Массы зарядов ВВ приведены в табл. 1. Поскольку время срабатывания детонаторов было неопределенным, а рассчитать время распространения взрывных воли к измерительным точкам сложно, то установить точную длительность задержки регистрации данных было трудно. В экспериментах с зарядами массой 10, 30, 60 и 100 г в камере I полезные данные не зарегистрированы, возможно, изза слишком короткого времени записи. После установки времени регистрации 10 мс и частоты дискретизации 500 кГц были получены пол-

Камера	Масса ТНТ, г								
$I(\theta = 10^{\circ})$	10*	30*	60*	100*	150**	200*	200	400**	500*
II $(\theta = 15^{\circ})$	50**	50	100**	150	200**	450*	_	_	_
III $(\theta = 20^{\circ})$	50**	100	150	200	450*	_	_	_	_

 ${\rm T}\, a\, {\rm f}\, \pi\, {\rm m}\, \pi\, a \,\, 1$ Масса зарядов BB, использованных в экспериментах

Примечание. *Эксперименты, в которых регистрация данных не планировалась или не получено полезных данных. **Эксперименты, в которых данные с некоторых каналов не зарегистрированы.

Рис. 2. Разрыв камеры I

Рис. 3. Расширение камеры II

ноценные данные для заряда массой 150 г в камере I.

Камера I в опыте с зарядом массой 500 г была разрушена как раз у того места, где располагалось BB, а вся камера была пластически изогнута. Как видно из рис. 2, внутренняя оболочка сильно пластически деформирована у разрыва, угол между плоскостью разрушения и аксиальным сечением внутренней оболочки $\approx 45^{\circ}$. Все стальные ленты на разрыве разрушены, большая их часть — в результате растяжения, остальные — из-за среза; найдено также несколько отдельных фрагментов.

При взрыве заряда массой 450 г цилиндрическая часть камеры II претерпела радиальную деформацию в месте расположения ВВ. При этом сама камера не была разрушена (рис. 3). Камера не была изогнута, ее внутренняя оболочка сохранилась, стальные ленты не разорваны, но максимальное расстояние между лентами увеличилось с 5 до 15 мм.

Разрыв камеры III в опыте с зарядом массой 450 г (рис. 4) аналогичен тому, который наблюдался в камере І. При этом камера III также пластически изогнута (рис. 5). При проведении экспериментов практически невозможно расположить ВВ точно по центру. Чтобы уменьшить влияние этого эффекта, показания датчиков g4 и g5 осредняли и осредненную запись обозначали как канал G4; аналогично записи датчиков g5 и g10 осреднены как канал G5. Деформации в точках А и С не представлены, так как они оказались сложны для понимания и требуют дальнейшего изучения.

Как видно из табл. 2, по мере увеличения массы заряда минимальные (ε_{\min}) и максимальные (ε_{\max}) деформации сжатия в направлении ширины стальных лент возрастают, возрастают и максимальные деформации растяжения в направлении длины лент, а также обе амплитуды ($\Delta \varepsilon$) в этих двух направлениях. Из табл. 2 также следует, что в направлении дли-

деформации камеры п, зарегистрированные по каналам оч и оз							
Macca		G4		$\mathrm{G}5$			
ТНТ, г	$arepsilon_{ ext{min}} \cdot 10^6$	$\varepsilon_{ m max} \cdot 10^6$	$\Delta \varepsilon \cdot 10^6$	$arepsilon_{ ext{min}} \cdot 10^6$	$arepsilon_{ ext{max}} \cdot 10^6$	$\Delta \varepsilon \cdot 10^6$	
50	-168	301	469	-312	256	568	
100	-820	446	1 2 6 6	107	1 2 5 0	1 143	
150	-2089	128	2 2 1 7	613	2 3 7 9	1 766	
200	-2182	980	3 162	1540	5 196	3 656	

 ${
m T}\,{
m a}\,{
m f}\,{
m nu}\,{
m \pi}\,{
m a}\,\,2$ Деформации камеры II, зарегистрированные по каналам G4 и G5

Таблица 3 Деформации различных камер, зарегистрированные по каналам G4 и G5, в экспериментах с зарядом массой 200 г

Камера		G4		G5			
	$\varepsilon_{\min} \cdot 10^6$	$\varepsilon_{ m max} \cdot 10^6$	$\Delta \varepsilon \cdot 10^6$	$arepsilon_{ ext{min}} \cdot 10^6$	$\varepsilon_{ m max} \cdot 10^6$	$\Delta \varepsilon \cdot 10^6$	
$I (\theta = 10^{\circ})$	-1329	1 047	2 376	-862	1 700	2 562	
II $(\theta = 15^{\circ})$	-2182	980	3 162	1540	5 196	3 656	
III $(\theta = 20^{\circ})$	-4261	-1041	3 220	4 581	7 327	2 746	

Рис. 4. Разрыв камеры III

ны лент существуют в основном дсформации растяжения, а в направлении ширины — деформации сжатия. Это согласуется с результатами статического нагружения [10].

Максимальные деформации сжатия в на правлении ширины стальных лент и максимальные деформации растяжения в направлении длины лент возрастают по мере роста угла намотки лент (табл. 3).

Профили «деформация — время» для камеры II (каналы G4 и G5) при взрыве ТНТ массой 150 и 200 г показаны на рис. 6, 7. Все

Рис. 5. Камера III после опыта с зарядом массой 450 г

кривые сглажены при помощи быстрого преобразования Фурье, которое отфильтровывало шумы с частотой выше 30 кГц. Деформации осциллируют с частотой $\approx 8\,300$ Γ ц, что на $6.1\,\%$ ниже, чем собственная частота колебаний — 8841 Гц — моноблочного цилиндра с таким же внутренним диаметром и толщиной стенки, что и у экспериментальных камер. Как видно из рис. 6, максимальные деформации сжатия G4 и максимальные деформации растяжения G5 наблюдаются на первых пиках волн. Однако на рис. 7 как максимальная деформация сжатия G4, так и максимальная деформация растяжения G5 возникают после нескольких периодов колебаний, что свидетельствует о росте деформаций [13, 14]. Из рис. 6 и 7 также следует,

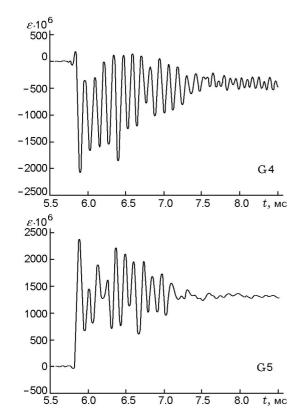


Рис. 6. Профили деформации камеры II при взрыве заряда массой 150 г

что в направлении длины стальных лент возникают в основном деформации растяжения, а в направлении ширины — деформации сжатия.

Хотя точка E располагалась на той же самой ленте, что и точка B, максимальные деформации камеры II, зарегистрированные датчиками g11 и g12, а также максимальные амплитуды оказались немного меньше, чем зарегистрированные датчиками g4 и g5: они не превышали 10 % от значений последних. Исключение составляет лишь эксперимент, проведенный с зарядом массой 200 г, в котором максимальные деформации, записанные датчиками g11 и g12, составляли 30 % от зарегистрированных датчиками g4 и g5.

В том же самом опыте максимальные деформации растяжения и наибольшие деформации сжатия в точке F на порядок меньше, чем максимальные деформации растяжения по каналу G5 и наибольшие деформации сжатия по каналу G4.

АНАЛИЗ РЕЗУЛЬТАТОВ

Как известно, при статическом нагруже-

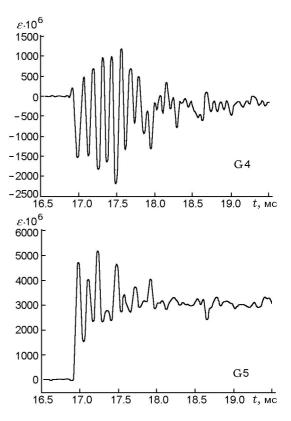


Рис. 7. Профили деформации камеры II при взрыве заряда массой 200 г

нии моноблочного тонкого цилиндра осевое напряжение равно половине окружного, поэтому осевая прочность тонкой внутренней оболочки выше окружной. Поскольку стальные ленты на камере II намотаны с меньшим углом, чем на камере III, окружная прочность камеры II больше усилена стальными лентами и ее полная окружная прочность выше, чем у камеры III. Поэтому при взрыве заряда массой 450 г камера III была разрушена, а камера II — нет.

Максимальная деформация сжатия в направлении ширины лент и максимальная деформация растяжения в направлении длины лент увеличиваются с ростом угла намотки лент, если толщины внутренней и слоистой оболочек и масса зарядов остаются неизменными. Это также свидетельствует о большей взрывостойкости многослойной камеры с меньшим углом намотки стальных лент.

После разрушения камеры из разрыва истекает газ высокого давления, придавая камере скорость в противоположном направлении в соответствии с законом сохранения импульса. На камеру действует толкающая сила сжатого газа в районе разрыва и две инерциальные силы

противоположного направления: одна у нижней крышки, другая — у верхней крышки и выходного фланца. Момент этих сил столь значителен, что камера пластически изгибается.

Деформации в точке E намного меньше чем в точке B, так как ударная энергия фокусируется преимущественно на том участке, где расположено BB. Кроме того, сила трения между слоями стальных лент может уменьшить напряжение, распространяющееся в этих лентах.

Деформации в контрольной точке F вызваны поперечными колебаниями из-за осевого удара (удара в осевом направлении). Нижняя крышка расположена дальше от BB, и осевой удар по ней намного слабее, чем по оболочке вблизи BB. Поэтому деформации в точке F значительно меньше, чем в точках B и D.

ЗАКЛЮЧЕНИЕ

- 1. Все три многослойные камеры разрушались в цилиндрической части вокруг заряда ВВ, установленного в центре их полостей.
- 2. В направлении длины стальных лент возникают главным образом деформации растяжения, а в направлении ширины лент деформации сжатия. Максимальные деформации растяжения и сжатия возрастают при увеличении угла намотки.
- 3. Камеры, в которых стальные ленты намотаны с меньшим углом, лучше противостоят взрывным нагрузкам при условии, что толщины внутренней и слоистой оболочек не меняются.

Работа поддержана Национальным фондом естественных наук Китайской Народной Республики (проект № 10372091).

ЛИТЕРАТУРА

1. Baker W. E., Allen F. J. The response of elastic spherical shells to spherically symmetric internal blast loading // Proc. of the Third U.S. National Congress of Applied Mechanics. New York: ASME, 1958. P. 70–87.

- Baker W. E. The elastic-plastic response of thin spherical shells to internal blast loading // J. Appl. Mech. 1960. N 27. P. 139–444.
- 3. Baker W. E. The axisymmetric modes of vibration of spherical shell // J. Acoust. Soc. Amer. 1961. N 33. P. 1749–1758.
- 4. Baker W. E., Hu W. C. L., Jackson T. R. Elastic response of thin spherical shells to axisymmetric blast loading // ASME J. Appl. Mech. 1966. V. 33. P. 800–806.
- Zhao S. D. Blast chamber [In Chinese] // Explosion and Shock Waves. 1996. V. 261. P. 85– 97
- Zhu W. H., Xue H. L., Han J. W., et al. The research advances in the dynamics of explosive chambers // Adv. Mech. 1996. V. 26, N 1. P. 68– 78.
- 7. Zheng J. Y., Xu P., Chen C. Investigation on bursting pressure of flat steel ribbon wound pressure vessels // Intern. J. Pressure Vessel and Piping. 1998. V. 75, N 7. P. 581–587.
- 8. Zheng J. Y., Sun G. Y., Wang L. Q. Review of development in layered vessels using flat ribbonwound cylindrical shell // Intern. J. Pressure Vessels and Piping. 1998. V. 75, N 9. P. 653–659.
- 9. **Zheng J. Y.** Design philosophy of flat ribbon wound layered pressure vessel // Intern. J. Pressure Vessel and Piping. 1998. V. 75, N 1. P. 57–61.
- 10. **Zhu G. H., Zheng J. Y.** Unique Flat Steel Ribbon Wound Pressure Vessels [In Chinese]. Bejing: Chinese Machine Press, 1995.
- 11. Zheng J. Y., Chen Y. J., Deng G. D., et al. An elastodynamic solution for discrete multilayered cylinder under transient loading // Proc. Intern. Conf. on Fracture and Damage of Advanced Materials FDAM2004. Hangzhou: China Machine Press, 2004. P. 1341–1358.
- 12. Zheng J. Y., Chen Y. J., Deng G. D., et al. Dynamic elastic response of an infinite discrete multilayered cylindrical shell subjected to uniformly distributed pressure pulse // Intern. J. Impact Engng. 2006. V. 32. P. 1800–1827.
- Impact Engng. 2006. V. 32. P. 1800-1827.
 13. Zhu W. H., Xue H. L., Zhou G. Q., et al. Dynamic response of cylindrical explosive chamber to internal blast loading produced by a concentrated charge // Intern. J. Impact Eng. 1997. V. 19. P. 931-945.
- 14. **Duffey T. A., Romero C.** Strain growth in spherical explosive chambers subjected to internal blast loading // Intern. J. Impact Eng. 2003. V. 28. P. 967–983,