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The computation of vibrational dynamics of semiconductor Co67Zr33 glassy alloy has been re-
ported for the first time that uses a different theoretical model potential formalism with Wills-
Harrison (WH) form. Various local field correction functions are used to study the screening 
influence. The thermodynamic and elastic properties are also estimated from the elastic limits 
of the phonon dispersion curves (PDC). The dispersion frequency with respect to the 
wavenumber is found to be influenced by the dielectric screening due to the conduction elec-
trons. Values obtained using the S-local field correction function and BS approach tend to be 
greater than other values calculated.  
 
K e y w o r d s: Co, Zr, pair potential, semiconductor glassy alloy, phonon dispersion curves 
(PDC), thermodynamic properties, elastic properties.  
 

INTRODUCTION 

The research on intertransition metals based binary alloys has followed from the desire to under-
stand the mechanisms responsible for their physical and electronic properties. Examples of significant 
problems include the conditions under which amorphous or crystalline phases form, and the techno-
logical origins of negative temperature coefficients of electrical resistance. At a basic level all of these 
properties must be controlled by the electronic structure of the valence electrons. Theoretical under-
standing of these structures has been difficult to achieve because of the lack of translational symmetry, 
both for disordered crystalline alloys and amorphous or glassy alloys. The possible application of tran-
sition metal alloys is in microelectronics or as thin-film coating [ 1 ].  

The composition dependence of viscous flow and atomic motion in undercooled metallic glass 
forming liquids like Co100–xZrx has been studied by Rößler and Teichler [ 2 ] using MD technique. 
Hence, the present exploratory study considers the Co100–xZrx system as a typical example of a transi-
tion metallic glass. The binary system was chosen to keep the situation as simple as possible. Very 
recently we have reported vibrational dynamics of some metallic glasses using model potential formal-
ism [ 3—11 ]. The theoretical computations of vibrational dynamics of Co67Zr33 glassy alloy has been 
reported for the first time in the present article in terms of the two longitudinal and transverse modes 
by employing three different approaches viz. Hubbard—Beeby (HB) [ 12 ], Takeno—Goda (TG) [ 13, 
14 ] and Bhatia—Singh (BS) [ 15, 16 ]. The pair potential has been calculated using the extended the-
ory of Wills—Harrison (WH) [ 17 ]. The well recognized model potential Gajjar et al. [ 3—11 ] is used 
with Hartree (H) [ 18 ], Taylor (T) [ 19 ], Ichimaru—Utsumi (IU) [ 20 ], Farid et al. (F) [ 21 ] and 
Sarkar et al. (S) [ 22 ] local field correction functions for the first time in the present study. The ther-
modynamic and elastic properties such as longitudinal sound velocity L, transverse sound velocity T, 
isothermal bulk modulus BT, modulus of rigidity G, Poissons ratio , Youngs modulus Y, Debye 
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temperature D and low temperature specific heat capacity CV have been calculated from the elastic 
limit of the phonon dispersion curves (PDC).  

The Vegards law was used to explain electron-ion interaction for binaries, but it is well known 
that the pseudo-alloy-atom (PAA) is a more meaningful approach to explain such kind of interactions 
in binary alloys [ 3—11 ]. Hence, in the present article the PAA model is used to investigate the vibra-
tional dynamics of binary Co67Zr33 glassy system. 

COMPUTATIONAL TECHNIQUE 

The fundamental component of the vibrational dynamics of metallic glasses is the pair potential. 
In the present study, the pair potential is computed using Wills—Harrison (WH) approach [ 3—11, 
17 ]: 
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The s-electron contribution to the pair potential VS(r) is calculated from the expression [ 3—11 ]: 
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where O is the atomic volume of the one component fluid.  
The energy wave number characteristics appearing in the Equation (2) is written as [ 3—11 ] 
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Here WB(q), H(q), f (q) are the bare ion potential, the Hartree dielectric response function and the 
local field correction functions to introduce the exchange and correlation effects, respectively. In the 
present computation, the ZS  1.5 is taken and parameters Zd and rd are obtained from the band struc-
ture data [ 3—11, 17 ]. 

The well recognized model potential WB(q) of Gajjar et al. [ 3—11 ] used in the present computa-
tion of phonon dynamics of binary metallic glasses is of the form 
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Here U = qrC. rC is the model potential parameter. This form has feature of a Coulombic term outside 
the core and varying cancellation due to repulsive and attractive contributions to the potential within 
the core in real space. The detailed information of this potential is given in the literature [ 3—11 ]. 
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The model potential parameter rC is calculated from the well known formula [ 23 ] as follows:  
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where Z, rS are the effective valence and effective Wigner—Seitz radius of the component, respec-
tively. The three theories for studying phonons in amorphous alloys proposed by HB [ 12 ], TG 
[ 13, 14 ] and BS [ 15, 16 ] have been employed for studying the longitudinal and transverse phonon 
frequencies in binary metallic glass.  

According to the HB [ 12 ], the expressions for longitudinal and transverse phonon frequencies 
are: 

 2 2
2 3

sin( ) 6cos( ) 6sin( )
( ) 1 ,

( ) ( )
L E

q q q
q

q q q

  
         


  (6) 

 2 2
2 3

3cos( ) 3sin( )
( ) 1 ,

( ) ( )
T E

q q
q

q q

  
     

  
 (7) 

where 2

0

4
( ) ( )

3E
2g r V r r dr

M

     
  

is the maximum frequency.  

Following to TG [ 13, 14 ], the wave vector (q) dependent longitudinal and transverse phonon fre-
quencies are written as 
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According to modified BS [ 15, 16 ] approach, the phonon frequencies of longitudinal and trans-
verse branches are given by  
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Other details of the constants used in this approach were already narrated in the literature [ 15, 
16 ]. Here M, are the atomic mass and the number density of the glassy component, while V (r) and 
V(r) are the first and second derivative of the pair potential, respectively.  

In the long-wavelength limit of the frequency spectrum, both phonon frequencies, i.e. transverse 
and longitudinal, are proportional to the wave vector (q) and obey the relationships: 

L  q  and  T  q, 

L = Lq  and  T  Tq,        (12) 

where L and T are the longitudinal and transverse sound velocities of the metallic glasses respec-
tively. For the three approaches the equations are: 

For HB [ 12 ] approach, the formulations for L and T are given by 
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In TG [ 13, 14 ] approach, the expressions for L and T are written by 
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The formulations for L and T in BS [ 15, 16 ] approach are as follows: 

 
1 2

1 1
(BS)

3 5 3
C

L
N ek           

 (17) 

and 

 
1 2

1 1
(BS) .

3 15
C

T
N          

 (18) 

In the long-wavelength limit of the frequency spectrum, transverse and longitudinal sound veloci-
ties L and T are computed. The isothermal bulk modulus BT, modulus of rigidity G, Poissons ratio 
, Youngs modulus Y and the Debye temperature D are found using the expressions [ 3—11 ]: 
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where M is the isotropic number density of the solid;  
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where D is the Debye frequency.  
The low temperature specific heat CV is obtained from Kovalenko and Krasny [ 24 ], 
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The basic feature of temperature dependence of CV is determined by the behavior of (q), where 
ħ, kB, T and D are the Planks constant, Boltzmann constant, temperature and Debye frequency of the 
glassy system, respectively.  
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Fig. 1. Dependence on screening of pair potential for Co67Zr33 glassy  
                                                    alloy 

 

RESULTS AND DISCUSSION 

The input parameters and other related constants used in the 
present computations, i.e. Z = 2.66, O = 1.5121  10–23 cm3, 
NC = 12.00, M = 1.1552  10–22 gm,  = 7.6407 gm/cm3 and rC = 
= 4.0752  10–9 cm, are calculated from the pure metallic data of 
the semiconductor glassy alloy.  

The presently computed pair potentials of Co67Zr33 glass are 
displayed in Fig. 1. It is apparent from the Fig. that the inclusions 
of exchange and correlation effects do not affect significantly the 
behavior of the pair potentials. The first zero for V(r = r0) due to 
all local field correction functions occurs at r0  5.2 au. The posi-
tion of Vmin(r) is not highly affected by the nature of the screening and the oscillatory nature is also 
absent at large r-region. The Coulomb repulsive potential part dominates the oscillations due to ion-
electron-ion interactions, which show the waving shape of the potential after 10 au. Hence, the pair 
potentials converge towards a finite value instead of zero in attractive region. 

The PCF computed theoretically through the effective interatomic pair potential is shown in 
Fig. 2. It is found that the peak positions due to S show higher values while those due to H show 
lower. The screening effect is observed in the nature of the PCF. The ratio (r2 /r1) of the position of the 
second peak (r2) to that of the first peak (r1) is found to be 1.46, 1.56, 1.51, 1.51 and 1.59 for H, T, IU, 
F and S, respectively. The ratio (r3 /r1) of the position of the third peak (r3) to that of the first peak (r1), 
i.e. the ratio of the third atomic shell radius to the nearest-neighbour distance, is found to be 2.00, 
2.16, 2.07, 2.07 and 2.18 for H, T, IU, F and S, respectively. All the ratios found are in fair agreement 
with the reported values of Co in amorphous state, i.e. (r2 /r1) = 1.65, 1.69 and (r3 /r1) = 1.93, 1.93 
[ 25 ]. The (r2 /r1) ratio is close to the c/a ratio in close-packed hexagonal structure, i.e. c/a = 1.63, 
which suggests that the short range order of nearest neighbours is influenced more or less by the 
atomic arrangement of the crystal structure. This result is typical of a metallic glass with a large main 
peak at the nearest-nearest distance followed by smaller peaks corresponding to more distant 
neighbours. The main peak is sharp because Co and Zr are comparable in size. Actually, it is very 
difficult to draw conclusions regarding the disorder visible after 15 Å in Fig. 2, because the experi-
mental data is not available for this glass. Actually, this long range order is normal and it may be due 
to the waving shape of the pair potential.  

The results shown in Fig. 3 are the phonon frequencies generated using HB approach with the 
five screening functions for studying the screening influence. It is seen that the inclusion of exchange 
and correlation effect raises the phonon frequencies in both longitudinal as well as transverse 
branches. The first minimum in the longitudinal branch is around q  1.9 Å–1 for H, q  2.6 Å–1 for T, 
q  2.5 Å–1 for IU as well as F and q  2.7 Å–1 for S-local field correction function. The influence of 
f (q) s on L at first peak due to T-dielectric function is 309.47 %, for IU is 165.85 %, for F is 
176.63 % and for S-screening is 695.93 % with respect to H-dielectric function. Such screening varia-
tion on T at q  1.0 Å–1 due to T, IU, F and S-screening is 242.98 %, 128.17 %, 137.40 % and 
539.75 %, respectively.  

The PDC calculated from the HB, TG and BS approaches with S-local field correction function are 
shown in Fig. 4. The first minimum in the longitudinal branch falls at q  2.7 Å–1 for HB, q  2.7 Å–1 
for TG and q  1.6 Å–1 for BS approach. The first crossing position of L and T in the HB, TG and 
BS approaches is seen at 2.1 Å–1, 2.0 Å–1 and 1.4 Å–1, respectively. Moreover, the present outcome of 
PDC due to BS approach is higher than those due to HB and TG approaches.  
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Fig. 2. Dependence on screening of pair correlation 
                   function for Co67Zr33 glassy alloy 

 

 
 

Fig. 3. Pair correlation function using S-function of 
                          Co67Zr33 glassy alloy 

 
As shown in Fig. 5, the mode of calculating phonon frequencies affects the anomalous behaviour 

of the specific heat CV. In low temperature region high bump is observed in HB and TG approaches, 
while linear nature is seen in BS approach as it is shown in Fig. 6. The anomalous linear nature  
 

 
 

 

 
 

Fig. 4. Dependence on screening of phonon dis-
persion curves for Co67Zr33 glassy alloy using HB 
                                  approach 

 

 
 

Fig. 5. Phonon dispersion curves for Co67Zr33 
glassy alloy using HB, TG and BS approaches 
                            with S-functions 
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Fig. 6. Low temperature specific heat of Co67Zr33 glassy alloy using HB, TG and BS approaches 
 

appears to be predominant in disordered materials containing low coordinated atoms. The computation 
of CV is performed up to the elastic limits of the PDC, i.e. low coordinated atoms only, which pro-
duced the anomalous linear nature. After the elastic limit of the PDC, atoms highly oscillate, that 
most probably affected the nature of the CV.  

From the elastic limit of the phonon frequency spectrum, the longitudinal and transverse sound 
velocities have been calculated as reported in Table. The elastic and thermodynamic properties have 
been calculated using three different approaches given in the same table. Also, one can note from the 
Table that all the properties calculated using the HB approach give minimum values, while the proper-
ties calculated using the BS approach give higher values. The Poissons ratio  remains constant be-
tween 0.25—0.30, which shows the elastic behaviour of the system. The obtained yielding is affected 
by various screening functions used in the present study as well as by the approach adopted for gener-
ating PDC.  

In all the three approximations, it is very difficult to judge which approximation is the best for 
computations of vibrational dynamics for Co67Zr33 glass, because each of his own identity. The HB 
approach is the simplest and old one; it generates consistent results of the phonon data for this glass  
 

Thermodynamic and Elastic properties of Co67Zr33 Glassy Alloy 

Approach 
Screening  
Functions 

L105,  
cm/s 

T105, 
cm/s 

BL1011, 
dyne/cm2 

G1011, 
dyne/cm2 

 
Y1011,  

dyne/cm2 
D, K 

H 1.17 0.67 0.58 0.35 0.25 0.87 90.10 
T 3.55 2.05 5.36 3.21 0.25 8.04 274.31 
IU 2.39 1.38 2.42 1.45 0.25 3.64 184.50 
F 2.49 1.44 2.62 1.57 0.25 3.94 191.98 

HB 

S 6.52 3.77 18.06 10.84 0.25 27.09 503.65 
H 1.88 1.08 1.51 0.88 0.25 2.22 143.97 
T 4.09 2.25 7.62 3.85 0.28 9.89 301.44 
IU 3.05 1.69 4.21 2.18 0.28 5.58 226.81 
F 3.16 1.75 4.50 2.34 0.28 5.98 234.71 

TG 

S 6.89 3.70 22.38 10.46 0.30 27.14 497.63 
H 19.53 11.94 146.22 108.84 0.20 261.62 1587.56 
T 19.42 11.85 144.90 107.34 0.20 258.25 1576.75 
IU 19.42 11.86 144.84 107.47 0.20 258.47 1577.61 
F 19.43 11.87 145.01 107.62 0.20 258.84 1578.76 

BS 

S 19.40 11.84 144.75 107.05 0.20 257.65 1574.71 
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because the HB approximation needs minimum number of parameters. While TG approach is devel-
oped upon the quasi-crystalline approximation where effective force constant depends on the correla-
tion function for the displacement of atoms and correlation function of displacement itself depends on 
the phonon frequencies. The BS approach retains the interatomic interactions effective between the 
first nearest neighbours only hence the disorder of the atoms in the formation of metallic glasses is 
greater showing deviation in magnitude of the PDC as well as in the related properties.  

The dielectric function plays an important role in the evaluation of potential due to the screening 
of the electron gas. For this purpose in the present investigations the local field correction functions 
due to Hartree (H) [ 18 ], Taylor (T) [ 19 ], Ichimaru—Utsumi (IU) [ 20 ], Farid et al. (F) [ 21 ] and 
Sarkar et al. (S) [ 22 ] local field correction functions are used. The reason for selecting these functions 
is that Hartree (H) [ 18 ] function does not include exchange and correlation effect and represents only 
static dielectric function, while Taylor (T) [ 19 ] function covers the overall features of the various lo-
cal field correction functions proposed before 1972. The Ichimaru—Utsumi (IU) [ 20 ], Farid et al. (F) 
[ 21 ] and Sarkar et al. (S) [ 22 ] functions are the most recent among the existing functions and they 
are not exploited rigorously in such studies. This helps us to study the relative effects of exchange and 
correlation in the aforesaid properties. Hence, the five different local field correction functions show 
variations up to an order of magnitude in the vibrational properties of the metallic glasses in Figu-
res 3—5.  

CONCLUSIONS 

Previously, vibrational dynamics has not been investigated theoretically using the IU, F and S-
local field correction functions. The PDC generated from the three approaches reproduce all the broad 
characteristics of dispersion curves. However, the BS approach is found to be more qualitative than 
the others. The comparison among present results could not be made due to non-availability of theo-
retical or experimental data. Nevertheless, the present study is very useful as it provides an important 
set of phonon data for Co67Zr33 glass. This study also confirms the applicability of the model potential 
in the aforesaid properties. Such study on vibrational dynamics of other binary and ternary liquid al-
loys and metallic glasses is in progress and will be communicated in near future. 
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