УДК 532.536

Теплоемкость неоднородного вещества в гравитационном поле вблизи критической точки

A.Д. Алехин¹, Б.Ж. Абдикаримов², Е.Г. Рудников¹

E-mail: alekhin@univ.kiev.ua

На основе флуктуационной теории фазовых переходов и теории гравитационного эффекта проведены исследования высотной и температурной зависимостей теплоемкости неоднородного вещества в поле гравитации Земли вблизи критической точки. Полученные результаты свидетельствуют о немонотонных полевых и температурных зависимостях теплоемкости пространственно неоднородного вещества, что подтверждается экспериментальными исследованиями теплоемкости в макрои ограниченных системах в земных условиях и условиях микрогравитации космического полета.

Ключевые слова: критическая точка, теплоемкость, радиус корреляции, рассеяние света, флуктуационная теория, микрогравитация.

В серии работ [1–4] представлены результаты экспериментальных исследований корреляционных и термодинамических свойств пространственно неоднородных систем в поле гравитации вблизи критической точки (КТ). В этих работах различными экспериментальными методами: молекулярного рассеяния света, рефрактометрическим, пропускания медленных нейтронов впервые показано, что высотное изменение внутреннего поля $|\Delta U| = |\Delta \mu = (\mu - \mu_{\rm K})/\mu_{\rm K}|$ в неоднородной системе в этих условиях значительно превышает высотное изменение гидростатического давления $h = \frac{\rho_{\rm K} g \ z}{P_{\rm K}} \ \left(\Delta \mu(h) = \left(10 \div 10^2\right)h\right)$. Здесь $\rho_{\rm K}$, $p_{\rm K}$, $\mu_{\rm K}$ — соответст-

венно критические значения плотности, давления, химического потенциала, g — ускорение свободного падения, z — высота, отсчитанная от уровня критической изохоры.

 \hat{B} этих работах впервые экспериментально обнаружено, что величина неоднородного внутреннего поля $|\Delta U| = |\Delta \mu|$ зависит: от сил межмолекулярного взаимодействия и критической температуры вещества $\left(\Delta U(T_{\rm K}) = \Delta \mu(T_{\rm K}) \sim T_{\rm K}^3\right)$, от линейного размера системы $(\Delta U(L) = \Delta \mu(L) \sim \frac{\rm const}{1+\alpha L} \sim L^{-\xi}, \ \xi$ — критический

© Алехин АД., Абдикаримов Б.Ж., Рудников Е.Г., 2010

¹Киевский национальный университет имени Тараса Шевченко, Украина

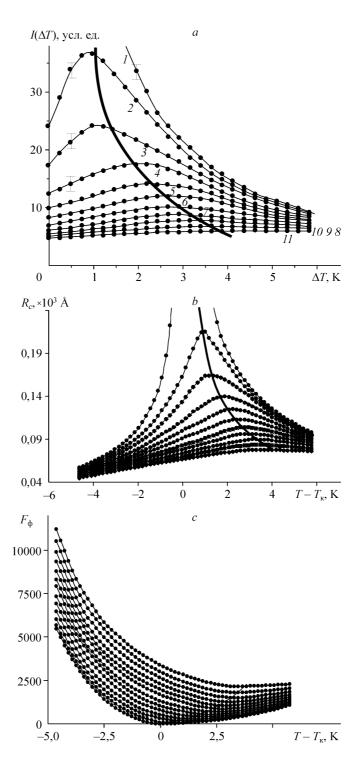
²Кзылордынский государственный университет им. Коркыт-Ата, Казахстан

показатель полевой зависимости радиуса корреляции, от средней плотности заполнения системы веществом $\left(\Delta U(\rho) = \Delta \mu(\rho)\right)$. На основании этих фактов условие равновесия неоднородных систем вблизи критической точки во внешнем поле h необходимо представить в виде [4]

$$\Delta\mu(T_{\kappa}, L, \overline{\rho}) = \Delta U(T_{\kappa}, L, \overline{\rho}) >> h. \tag{1}$$

Именно реальное наличие такого значительного высотного изменения внутреннего неоднородного поля $\Delta\mu(T,L,\overline{\rho})>>h$ приводит к неожиданной немонотонной температурной зависимости корреляционных и термодинамических свойств неоднородных жидкостей вблизи КТ. Так, в работах [4–6] впервые было показано, что действие такого неоднородного поля $\Delta\mu(h)>>h$ приводит также к немонотонной температурной зависимости интенсивности рассеянного света $I(t)\sim\beta_T(t)\sim R_C(t)^{2-\eta}$, сжимаемости $\beta_T(t)$, радиуса корреляции $R_C(t)$ и флуктуационной части свободной энергии $F_{\varphi}(t)=C_0R_c^{-3}(t)$ [7] неоднородного вещества при постоянных полях $\Delta\mu(h)\neq 0$. При этом максимальные значения этих характеристик неоднородной системы соответствуют не критической температуре вещества T_K , а температурам $T>T_K$. Здесь η — критический показатель аномальной размерности корреляционной функции [7].

В качестве примера экспериментальные данные температурной зависимости интенсивности рассеянного света $I(t) \sim \beta_T(t)$, радиуса корреляции $R_c(t)$, свободной энергии $F_{\phi}(t) = C_0 R_c^{-3}(t)$ при постоянных полях $\Delta \mu(h)$ на высотах $z = (0 \div 10)$ мм для неоднородного фреона-113 [3, 4] показаны на рис. 1, a, b, c.


Исходя из представленных выше немонотонных температурных зависимостей корреляционных свойств неоднородного вещества во внешнем поле h можно предположить, что аналогичная немонотонная температурная зависимость может характеризовать и такую калорическую характеристику вещества, как теплоемкость. Целью настоящей работы является исследование калорической характеристики системы — изохорной теплоемкости $C_v = \frac{\partial^2}{\partial t^2} F_{\phi}(Z^*)$ неоднородного вещества

Ранее изучение теплоемкости неоднородного вещества в гравитационном поле проведено в работе [8] на основе классической теории критических явлений [9]. При этом расчеты проводились с использованием классического условия равновесия системы во внешнем поле $|\Delta \mu| = |h|$, которое, согласно работе [9], может быть использовано только вдали от критической точки для несжимаемых жидкостей, без учета флуктуаций.

в гравитационном поле вблизи КТ.

Возвращение к этому вопросу стимулировали современные интенсивные исследования теплоемкости как в макро-, так и в наноограниченных системах в земных условиях [10] и условиях микрогравитации космического полета [11–14].

Для решения поставленной задачи на основе флуктуационной теории фазовых переходов (ФТФП) [7] был использован вид поверхности свободной энергии системы $F_{\Phi}(t, \Delta\mu(h)) = C_0 R_c^{-3} \left(t, \Delta\mu(h)\right) = C_0 t^{3\nu} \left[\Phi(Z_1^*)\right]^3$ в поле гравитации Земли [3, 4] (см. рис. 1, c). Здесь $\Phi(Z_1^*)$ — масштабная функция масштабного параметра $Z_1^* = \Delta\mu/t^{\beta\delta}$ ФТФП [7], v, β, δ — критические показатели [7].

 $Puc.\ I.$ Температурные зависимости неоднородного фреона-113: a — экспериментальные значения интенсивности рассеянного света $I(t)\sim \beta_T(t)\sim R_C(t)^{2-\eta},\ b$ — радиусы корреляции $R_C(t),\ c$ — флуктуационная часть свободной энергии системы $F_\phi(t)$ при постоянных полях $\Delta\mu(h)$ на высотах $z=(0\div 10)$ мм (сплошной линией указаны линии экстремумов интенсивности рассеянного света $I(t)\sim \beta_T(t),$ радиуса корреляции $R_C(t),$ флуктуационной части свободной энергии системы $F_\phi(t)$).

Исходя из вида масштабной функции вещества $\Phi(Z_1^*)$ [7] в гравитационном поле, найдены уравнения теплоемкости $C_v(t,h)=d^2F/dt^2$ неоднородной жидкости вдоль трех предельных критических направлений — границы раздела фаз $(Z_1^* << 1,\ t < 0)$, критической изохоры $(Z_1^* << 1,\ t > 0)$, критической изотермы $(Z_2^* << 1,\ t < 0)$ и t > 0, $Z_2^* = t/\Delta \mu^{1/\beta\delta}$). Асимптотические разложения масштабных функций $\Phi(Z_1^*)$ [7] вдоль этих направлений соответственно имеют вид:

$$\Phi_{1}\left(Z_{1}^{*}\right) = \left(\sum_{n=0}^{\infty} b_{n}\left(Z_{1}^{*}\right)^{n}\right), \quad \Phi_{1}\left(Z_{1}^{*}\right) = \left(\sum_{n=0}^{\infty} a_{2n}\left(Z_{1}^{*}\right)^{2n}\right), \quad \Phi_{2}\left(Z_{2}^{*}\right) = \left(\sum_{n=0}^{\infty} d_{n}\left(Z_{2}^{*}\right)^{n}\right). \quad (2)$$

Здесь $Z_1^* = (Z_2^*)^{-1/\beta\delta} = \Delta \mu |t|^{\beta\delta}$ — масштабный параметр, $t = (T - T_{\rm k})/T_{\rm k}$, $\Delta \mu(h) = (\mu - \mu_{\rm k})/\mu_{\rm k} = d\mu/dh \cdot h >> h$. В асимптотических разложениях (2), согласно ФТФП [7], параметры b_1 , a_2 , d_1 положительны. Это связано с тем, что при отходе от критической точки обратный радиус корреляции системы R_c^{-1} увеличивается.

Как было показано выше, величина химического потенциала $\Delta \mu$ и производной $d\mu/dh$, согласно (2), зависит от критической температуры вещества, линейных размеров системы и средней плотности ее заполнения $\Delta \mu(T_{\kappa}, L, \overline{\rho})$.

Тогда на основе (2) теплоемкость неоднородного вещества в этих случаях имеет вид:

1)
$$Z_1^* << 1, t < 0,$$

$$C_{v}(h,t) = (\partial^{2} F / \partial t^{2})_{\mu} =$$

$$= C_{0}b_{0}^{2} |t|^{3\nu-2} 3(\nu b_{0}(3\nu-1) + b_{1}(\beta\delta - 3\nu)(\beta\delta - 3\nu + 1)(\Delta\mu/|t|^{\beta\delta}) + ...), \tag{3}$$

2) $Z_1^* << 1, t>0$,

$$C_{\nu}(h,t) = (\partial^{2} F / \partial t^{2})_{\mu} = C_{0} a_{0}^{2} t^{3\nu - 2} 3(\nu a_{0} (3\nu - 1) + a_{2} (3\nu - 2\beta\delta)(3\nu - 2\beta\delta - 1)(\Delta\mu / t^{\beta\delta})^{2} + ...),$$

$$(4)$$

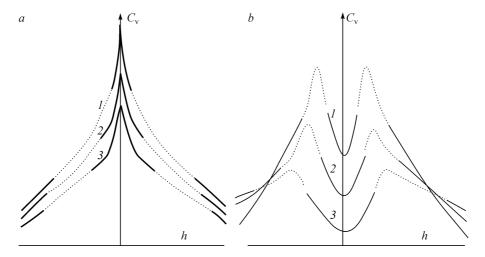
3) $Z_2^* << 1, t < 0 \text{ if } t > 0$,

$$C_{\nu}(h,t) = (\partial^{2} F/\partial t^{2})_{\mu} = C_{0} \Delta \mu^{3\xi - (2/\beta\delta)} 6(d_{0}(d_{2}d_{0} + d_{1}^{2}) + d_{1}(6d_{2}d_{0} + d_{1}^{2})(t/\Delta \mu^{(1/\beta\delta)}) + ...).$$

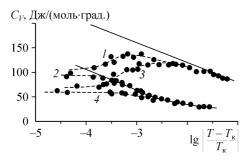
$$(5)$$

Схематически вид полевой—высотной зависимости теплоемкости неоднородного вещества в поле гравитации Земли $h = \rho_{\rm K} gz/P_{\rm K}$ при $t = {\rm const}$ показан на рис. 2, a, b.

Полученные результаты (3)–(5) (см. рис. 2) приводят к следующим выводам о поведении теплоемкости неоднородной системы вблизи критической точки:


1) в докритической области температур (t < 0) согласно уравнениям (3) и (5) при приближении к уровню границы раздела фаз $z \Rightarrow 0$ ($\Delta \mu \Rightarrow 0$) или к критической температуре ($t \Rightarrow 0$) величина теплоемкости неоднородного вещества монотонно увеличивается как в случае $Z_1^* = \Delta \mu / t^{\beta \delta} << 1$, так и в случае $Z_2^* << 1$,

2) в отличие от температур t < 0, в закритической области температур (t > 0) вблизи термодинамического направления $Z_1^* = \Delta \mu t^{\beta \delta} << 1$ при отдалении от уровня критической изохоры ($\Delta \mu = d\mu/dh \cdot h = 0, z = 0$) теплоемкость неоднородного вещества не уменьшается, а наоборот, возрастает (в формуле (4) произведение $(3\nu - 2\beta\delta)(3\nu - 2\beta\delta - 1) > 0$). Однако, как видно из (5), вдоль термодинамического направления $Z_2^* << 1$ при увеличении полевой переменной $\Delta \mu = d\mu/dh \cdot h$ теплоемкость неоднородного вещества уменьшается. Таким образом, на закритических изотермах $C_{\nu}(\Delta z, t)$ неоднородного вещества должна наблюдаться немонотонная полевая—высотная зависимость теплоемкости с максимумом не на уровне критической изохоры ($\Delta \mu \neq 0$),


3) кроме того, согласно (4) и (5), при t>0 на постоянных высотах z ($\Delta\mu=$ const) теплоемкость неоднородного вещества вблизи различных направлений $Z_1^*<<1$ и $Z_1^*>>1$ ведет себя различным образом. Так, при приближении к критической температуре $t\Rightarrow 0$ в случае $Z_1^*<<1$ параметр $C_v(\Delta z,t)$ возрастает при уменьшении t, а в случае $Z_1^*>>1$, теплоемкость $C_v(\Delta z,t)$ наоборот — уменьшается. Это приводит уже к немонотонной температурной зависимости изобар теплоемкости ($\Delta\mu=$ const) с максимумом в области температур $t\neq 0$. Лишь при $z\Rightarrow 0$ ($\Delta\mu\Rightarrow 0$) максимум теплоемкости соответствует критической температуре неоднородного вещества (t=0).

Вывод о немонотонной температурной зависимости теплоемкости вещества с максимумами в закритической области температур подтверждается экспериментальными исследованиями температурных зависимостей теплоемкости неоднородного аргона в гравитационном поле вблизи КТ в камерах различной высоты [15] (рис. 3).

Такая же немонотонная температурная зависимость теплоемкости вещества следует из результатов исследований двойного раствора 2,6 — лутидин—вода в малых порах при постоянных линейных размерах L этих пор вблизи критической температуры расслоения (рис. 4) [10].

 $Puc.\ 2.$ Схематический вид полевой—высотной зависимости теплоемкости неоднородного вещества в поле гравитации Земли при постоянных температурах $t:\ (T < T_{\rm K})\ |t_1| < |t_2| < |t_3|\ (a),$ $(T > T_{\rm K})\ t_1 < t_2 < t_3\ (b).$ Сплошные линии — области близкие и далекие по отношению к критической изохоре или границе раздела фаз, пунктирные линии — примерный ход изотерм в промежуточной области.

Puc.~3. Немонотонные температурные зависимости теплоемкости $C_{\nu}(z,\,t)$ [15] для неоднородного аргона при отсутствии перемешивания в камере высотой L=2 см выше $(I)~T>T_{\rm K}$ и ниже $(2)~T< T_{\rm K}$, и в камере высотой L=8 см выше $(3)~T>T_{\rm K}$ и ниже $(4)~T< T_{\rm K}$, сплошные линии — данные при перемешивании в калориметре высотой L=8 см.

В этом случае, согласно работе [16],

постоянному линейному размеру системы L соответствует постоянное поле $\Delta\mu$: $(\Delta\mu(L)\sim L^{-1/\xi},\,\xi=0,4).$

Исходя из проведенных нами теоретических расчетов $C_{\nu}(\Delta z, t)$ (3)–(5), немонотонные температурные зависимости теплоемкости неоднородного вещества можно ожидать не только в земных условиях [10, 15] (см. рис. 3, 4), но и в условиях микрогравитации космического полета [11–14].

Экспериментальные исследования свойств жидкостей на околоземных орбитальных станциях [17, 18] свидетельствуют о значительной неоднородности вещества в этих условиях вблизи точек фазового перехода I и II рода. В работах [11–14] обнаружены также и немонотонные температурные зависимости теплоемкости вещества в наносистемах в условиях микрогравитации космического полета. Действительно, на рис. 5 в качестве примера представлены немонотонные температурные зависимости теплоемкости 4 He [11] при постоянных линейных размерах L системы.

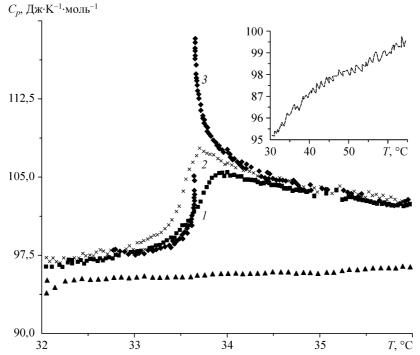
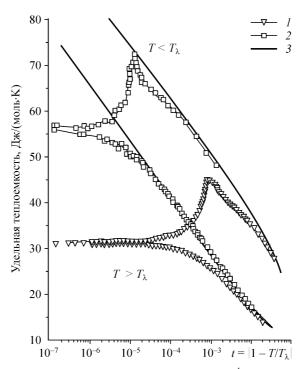



Рис. 4. Немонотонные температурные зависимости теплоемкости в малых ограниченных системах вблизи критической температуры (≈ 33,65 C) расслоения двойного раствора 2,6—лутидин—тяжелая вода [10] размера: $L=1000\,\mathrm{A}$ (1), 2500 (2) A , 3 — макроскопический образец.

Рис. 5. Зависимость аномалии теплоемкости для системы ⁴He от температуры [11].

Аналогичные немонотонные зависимости $C_{\nu}(t)$ получены для ³Не и растворов ³Не–⁴Не [14].

В работах [12, 13] показано, что для этих ограниченных систем справедлива модель из работы [16]. Тогда и для этих данных, согласно [16], постоянный линейный размер системы L соответствует постоянному полю $\Delta \mu$: $\left(\Delta \mu_{d}(L) \sim L^{-1/\xi}\right)$.

Таким образом, на основе проведенных расчетов и полученных результатов (3)–(5) можно сделать вывод, что теплоемкость неоднородного вещества в поле гравитации Земли вблизи КТ имеет немонотонные температурную и полевую (высотную) зависимости в закритической области температур (t > 0) с максимумами на высотах $h \neq 0$. Лишь при $t \Rightarrow 0$, $h \Rightarrow 0$ максимальное значение температурных и высотных зависимостей теплоемкости соответствует критической точке.

Проведенные расчеты полностью подтверждаются экспериментальными исследованиями теплоемкости неоднородного вещества как в земных условиях, так и в условиях космоса, как в макросистемах, так и в нанофлуктуационных системах вблизи КТ.

СПИСОК ЛИТЕРАТУРЫ

- Алехин А.Д. Сжимаемость вещества и гравитационный эффект вблизи критической точки // УФЖ. 1983. Т. 28, № 8. С.1261–1263.
- 2. Алехин А.Д., Булавин Л.А., Рудников Е.Г. Гравитационный эффект и величина внутреннего неоднородного поля в веществе вблизи критической точки // УФЖ. 1996. Т. 41, № 11–12. С. 1059–1061.
- Алехин А.Д., Рудников Е.Г. Гравитационный эффект в высокотемпературных жидкостях вблизи критической точки // Журнал физических исследований. 2004. Т. 8, № 2. С. 103–121.
- Алехин А.Д., Дорош А.К., Рудников Е.Г. Критическое состояние вещества в поле гравитации Земли. Киев.: Политехника, 2008. 404 с.

- **5.** Алехин А.Д., Крупский Н.П., Чалый А.В. Свойства вещества в точках экстремумов восприимчивости при постоянных полях в окрестности критического состояния // ЖЭТФ. 1972. Т. 63, вып. 4(10). С. 1417–1420.
- **6. Алехин А.Д., Рудников Е.Г.** Свойства неоднородного вещества в гравитационном поле вдоль линии экстремумов восприимчивости // УФЖ. 1995. Т. 40, № 9. С. 941–944.
- Паташинский А.З., Покровский В.Л. Флуктуационная теория фазовых переходов. 2-е изд., перераб. М.: Наука, 1982. 382 с.
- **8. Воронель А.В., Гитерман М.Ш.** Гидростатический эффект вблизи критической точки жидкости // ЖЭТФ. 1960. Т. 39, вып. 4(10). С. 1162–1164.
- **9.** Ландау Л.Д., Лифшиц Э.М. Статистическая физика. 3-е изд., доп. М.: Наука, 1976. 584 с.
- **10. Воронов В.П., Булейко В.М.** Экспериментальное исследование поведения теплоёмкости в конечных системах в окрестности критической точки смешения // ЖЭТФ. 1998. Т. 113, № 3. С. 1071–1081.
- 11. M.O. Kimball, S. Mehta, F.M. Gasparini Specific Heat Near the Superfluid Transition of a 0,9869 μ m 4 He Film // J. of Low Temperature Physics. 2000. Vol. 121, No. 1/2. P. 29–51.
- **12. Mehta S., Kimball M.O., Gasparini F.M.** Superfluid Transition of ⁴He for Two-Dimensional Crossover, Heat Capacity, and Finite-Size Scaling // J. of Low Temperature Physics. 1999. Vol. 114, No. 5/6. P. 467–521.
- 13. Diaz-Avila M., Kimball M.O., Gasparini F.M. Behavior of 4 He Near T_{λ} in Films of Infinite and Finite Lateral Extent // J. of Low Temperature Physics. 2004. Vol. 134, No. 1/2. P. 613–618.
- **14. Kimball M.O., Gasparini F.M.** Critical Behavior and Scaling of Confined ³He–⁴He Mixstures // J. of Low Temperature Physics. 2002. Vol. 126, No. 1/2. P. 103–108.
- 15. Новиков И.И. Избранные труды. М.: Физматлит, 2007. 318 с.
- 16. Fisher M.E., Barber M.N. Scaling Theory for Finite-Size Effects in the Critical Region // Phys. Rev. Lett. 1972. Vol. 28. P. 1516–1519.
- 17. Земсков В.С., Шульгина И.Л., Титков А.Н. Исследование кристаллов твердых растворов германий–кремний–сурьма, полученных в эксперименте "Универсальная печь" программы Союз-Аполлон // Физика твердого тела. 1979. Т. 21, вып. 4. С. 987–1000.
- **18. Straub J., Nitsche K.** Isochoric heat capacity C_{ν} at the critical point of SF₆ under micro- and earth-gravity: Results of the german spacelab mission D1 // Fluid Phase. Equilibria 1993. Vol. 88. P. 183–208.

Статья поступила в редакцию 4 марта 2009 г.