2009. Том 50, № 5

Сентябрь – октябрь

C. 967 – 979

УДК 538.956.403:541.64

АНАЛИЗ РЕЛАКСАЦИОННЫХ ПРОЦЕССОВ В ПОЛИПРОПИЛЕНГЛИКОЛЯХ ВЫШЕ ТЕМПЕРАТУРЫ СТЕКЛОВАНИЯ

© 2009 Т.М. Усачева, Н.В. Лифанова, В.И. Журавлев*, В.К. Матвеев

Московский государственный университет им. М.В. Ломоносова, химический факультет

Статья поступила 21 июня 2008 г.

Диэлектрические спектры (ДРС) полипропиленгликолей Н—(С₃H₆O)_{N_p}—OH (ППГ), где $N_p = 1, 2, 3, 7, 12, 17, 20, 34, 69$, проанализированы в рамках кластерной модели Диссадо—Хилла (ДХ) выше температур стеклования. В ППГ структурными кластерами являются ассоциаты, образованные внутри- (BMC) и межмолекулярными (MBC) водородными связями. Активационные процессы разрыва и образования МВС в кластерах, когда меняется общее число MBC, характеризуются параметром $n_{\rm DH}$. Флуктуационные процессы синхронного обмена молекулами между соседними кластерами соответствуют процессам перераспределения МВС между кластерами, когда меняется лишь расположение MBC, но не их общее число, характеризуются параметром $m_{\rm DH}$. При 303 и 423 К рассчитано время релаксации τ_{DH} , параметры n_{DH} и m_{DH} , описывающие ДРС. В интервале температур 210-323 К определена энергия активации процессов релаксации. Рассчитаны среднестатистические квадраты дипольных моментов кластеров $\langle \mu_c^2 \rangle$ и молекул $\langle \mu_m^2 \rangle$ ди-ПГ, ППГ-425 (N_p = 7) и ППГ-2025 (N_p = 34) при 303 и 423 К. Определено число звеньев оксипропиленовых цепочек, участвующих в процессах релаксации. Исследована зависимость параметров модели ДХ, энергии процессов релаксации, $\langle \mu_c^2 \rangle$ и $\langle \mu_{\rm m}^2 \rangle$ от N_p .

Ключевые слова: полипропиленгликоли, диэлектрические спектры, дипольные моменты кластеров, дипольные моменты молекул, межмолекулярные взаимодействия.

введение

Дисперсия комплексной диэлектрической проницаемости полипропиленгликолей (ППГ) $\varepsilon(\omega) = \varepsilon'(\omega) + \varepsilon''(\omega)$, где $\varepsilon'(\omega)$ и $\varepsilon''(\omega)$ — диэлектрическая проницаемость и потери, изучена в широком интервале частот (10^{-4} Гц—15 ТГц) и температур как ниже, так и выше температуры стеклования T_{gd} [1—12]. В диэлектрических спектрах (ДРС) ППГ помимо основного низкочастотного процесса α -релаксации экспериментально наблюдаются более низкочастотный (НЧ) (α' -релаксация) [6—9] и высокочастотный (ВЧ) (β -релаксация) [5, 11] процесс и две резонансные полосы поглощения $\varepsilon''(\omega)$ [12] в дальней ИК области (0,1—10 ТГц).

При одновременном анализе дисперсии $\varepsilon'(\omega)$ и $\varepsilon''(\omega)$ для определения распределения времен релаксации обычно используют уравнения, являющиеся частным случаем эмпирического уравнения Гаврильяка—Негами (ГН) [13]:

$$\varepsilon(\omega) = \varepsilon_{\omega HN} + \frac{\varepsilon_{s} - \varepsilon_{\omega HN}}{\left[1 + (i\omega\tau_{HN})^{1 - \alpha_{HN}}\right]^{\beta_{HN}}},$$
(1)

где ε_{s} — статическая диэлектрическая проницаемость; $\varepsilon_{\infty HN}$ и ($\varepsilon_{s} - \varepsilon_{\infty HN}$) — высокочастотный предел и амплитуда области дисперсии $\varepsilon(\omega)$; частота ω_{HN} и время τ_{HN} релаксации связаны меж-

^{*} E-mail: zhura-061@yandex.ru

ду собой соотношением $\omega_{\text{HN}} = 1/\tau_{\text{HN}}$; α_{HN} и β_{HN} — параметры, характеризующие распределение времен релаксации; $\tau_{\text{HN}} = \tau_{\text{m}}$ ($\tau_{\text{m}} = 1/2\pi f_{\text{m}}$, где f_{m} — частота максимума диэлектрических потерь, $\varepsilon_{\text{m}}''(\omega_{\text{m}}) = \varepsilon_{\text{m}}''(2\pi f_{\text{m}})$). При $\alpha_{\text{HN}} = 0$, $\beta_{\text{HN}} = 1$ уравнение ГН (1) переходит в уравнение Дебая (Д) с $\omega_{\text{HN}} = \omega_{\text{D}} = 1/\tau_{\text{D}}$, при $\beta_{\text{HN}} = 1$, $0 \le \alpha_{\text{HN}} = \alpha_{\text{CC}} < 1$ — в уравнение Коула—Коула (КК) с $\omega_{\text{HN}} = \omega_{\text{CC}} = 1/\tau_{\text{CC}}$, при $\alpha_{\text{HN}} = \alpha_{\text{DC}} = 0$ и $0 < \beta_{\text{HN}} = \beta_{\text{DC}} \le 1$ — в уравнение Дэвидсона—Коула (ДК) с $\omega_{\text{HN}} = \omega_{\text{DC}} = 1/\tau_{\text{DC}}$.

Области дисперсии $\varepsilon(\omega)$, обусловленные α -процессами, чаще всего описывались уравнением ДК [1—4, 6], а α' - и β -процессы — уравнением КК [6, 11].

Часто распределение времен релаксации определяют из нелинейной температурной зависимости времен τ_α α-релаксации полимеров, которую описывают эмпирическими уравнениями Кольрауша—Вильямса—Уотса (КВУ) или Фогеля—Фульчера—Таммана (ФФТ) [14—19]. В уравнении КВУ

$$\Phi_{\rm KWW}(t) = \exp[-(t/\tau_{\rm KWW})^{\beta_{\rm KWW}}], \qquad (2)$$

 $0 < \beta_{KWW} \le 1$ и τ_{KWW} — константы, не зависящие от времени *t*. Считается, что $\tau_{KWW} \approx \tau_{\alpha}$ определяет температурную зависимость α -релаксации, а β_{KWW} — ширину распределения времен релаксации [18]. Для ППГ τ_{KWW} и β_{KWW} при T_{gd} были определены в работах [4, 5, 9, 11]. В уравнении $\Phi\Phi$ Т

$$\tau_{\rm VFT} = \tau_{\infty \rm VFT} \exp(U_{\rm VFT} / RT) \tag{3}$$

 $\tau_{\infty VFT}$ зависит от размера релаксирующего структурного элемента [14, 15]; *T* — абсолютная температура; *R* — универсальная газовая постоянная. Энергия активации процесса диэлектрической релаксации U_{VFT} не описывается уравнением Аррениуса, т.е. зависит от температуры:

$$U_{\rm VFT} = U_{\infty\rm VFT} T (T - T_0), \tag{4}$$

где $U_{\infty VFT}$ — предельное значение энергии активации при $T \to \infty$; T_0 — структурная константа, равная температуре, при которой полностью прекращается молекулярная подвижность, ответственная за процесс α -релаксации в полимерах; время релаксации $\tau_{VFT} \to \infty$ и энергия $U_{VFT} \to \infty$. В ДРС полимеров температура стеклования T_{gd} выбирается такой, при которой время релаксации равно 100 с [4, 5, 14, 15].

Предполагается, что процесс α -релаксации связан с переориентацией сегментов в полиоксипропиленовых (ОП) цепочках ППГ. Процесс α' -релаксации интерпретируется как процесс переориентации всей ОП цепочки или части, более длинной, чем сегмент [6—9]. Процесс β -релаксации связывают с движением отдельных групп полимерной цепи ППГ [11], а резонансные полосы поглощения $\varepsilon''(\omega)$ [12] — с внутримолекулярными колебаниями отдельных групп полимерной цепи ППГ.

Различные модели структуры аморфных полимеров и протекающих в них кооперативных процессов ее перестройки представлены в работах [14—17, 20—25]. Параметр β_{KWW} в уравнении (2), согласно модели кооперативных перестроек [23—25], отражает степень кооперативности релаксационных процессов в ППГ [4, 5, 9, 11]. Модель Адама—Гиббса [22, 26] объясняет нелинейную температурную зависимость времен релаксации ППГ в уравнениях ФФТ (3) и (4) в терминах изменения размера области кооперативной перестройки [4].

Недостатком однопараметрических моделей, к которым можно отнести уравнения КВУ и ФФТ, является то, что они не позволяют оценивать дипольный момент кинетических единиц, участвующих в процессах диэлектрической релаксации полимеров (при совместном анализе дисперсий $\varepsilon'(\omega)$ и $\varepsilon''(\omega)$ такая оценка может быть сделана по амплитуде области дисперсии $\varepsilon_{s} - \varepsilon_{\infty HN}$).

В отличие от моделей с одним параметром корреляции [23—26], двухуровневая модель Диссадо—Хилла (ДХ) [27—32] устанавливает связь параметров уравнения ГН (1) с двумя параметрами корреляции кооперативных процессов перестройки микроструктуры. При анализе ДРС поли(γ-бензил-L-глютамина) (PBLG) с молекулярной массой (ММ) 10³—10⁶ в пленках и растворах [29, 31] модель ДХ была использована лишь для установления зависимости параметров корреляции от типа образующихся кластеров, но расчет среднестатистических квадра-

тов дипольных моментов $\langle \mu_c^2 \rangle$ кластеров PBLG, участвующих в процессах релаксации, авторы не проводили.

Цель настоящей работы состояла в изучении возможности определения с помощью модели ДХ не только параметров корреляции и энергетических характеристик процессов перестройки структуры кластеров, как в работах [28, 29], но и $\langle \mu_c^2 \rangle$. Для реализации данной задачи были объединены результаты исследований ДРС ППГ, выполненных разными авторами, в интервалах температур 303—423 [1—3] и 210—323 К [4, 5]. В работах [1—3] приведены данные об $\epsilon'(\omega)$ и $\epsilon''(\omega)$ ППГ, необходимые для определения амплитуды области дисперсии $\epsilon_s - \epsilon_{\infty}$, которая используется при расчетах $\langle \mu_c^2 \rangle$, но они относятся к интервалу температур, далекому от области стеклования ППГ, и поэтому не позволяют определить энергетические параметры модели ДХ. Для получения этих параметров были использованы результаты обработки ДРС ППГ в окрестности $T_{\rm gd}$, имеющиеся в работах [4, 5] (в этих статьях приведены времена релаксации и параметры их распределения, но не представлены экспериментальные данные об $\varepsilon'(\omega)$ и $\varepsilon''(\omega)$). Полный набор данных, необходимых для расчета $\langle \mu_c^2 \rangle$, был доступен только для ПГ, ди-ПГ, ППГ-425 ($N_p = 7$) и ППГ-2025 ($N_p = 34$).

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Модель ДХ [27—32] является кинетической (релаксационной) моделью [22]. Как и другие модели двухуровневых систем [20, 21], она применима к системам, характеризующимся набором упорядоченных микрообластей (кластеров) с разным временем жизни [14]. Конкретные структурные характеристики как отдельных молекул, так и кластеров в явном виде в ней не фигурируют. Косвенно они характеризуются параметрами корреляции релаксационных процессов перестройки микроструктуры.

Под кластерами в модели ДХ понимают частично ассоциированные структурные группы [31]. Степень структурной упорядоченности среднестатистического кластера минимального размера характеризуется параметром $0 \le n_{\text{DH}} \le 1$. При $n_{\text{DH}} = 0$ кластеры не образуются, и отсутствует корреляция между процессами переориентации молекул. При n_{DH} = 1 кластеры имеют кристаллическую структуру, в которой процессы переориентации молекул полностью скоррелированы. Для полимеров понятия об упорядоченных микрообластях, структурных кластерах, ассоциатах по существу не отличаются друг от друга и соответствуют понятию надсегментальные структуры [14]. Согласно модели ДХ, кластеры, в свою очередь, входят в состав межкластерных образований, степень структурной упорядоченности внутри которых определяется параметром $1 - m_{DH}$, где $0 \le m_{DH} \le 1$ [31]. Крайние значения $m_{DH} = 0$ и $m_{DH} = 1$ соответствуют идеальной кристаллической решетке без флуктуаций и жидкости с идеальным гидродинамическим движением.

Однозначного подтверждения предполагаемой в модели ДХ [31] микроструктуры экспериментально получить нельзя, однако исследования другими методами (например, измерение вязкости, ИК спектров) косвенно свидетельствуют о том, что в ППГ структурными кластерами являются ассоциаты, образованные ВМС и МВС водородными связями [33, 34]. При каждой температуре существует распределение кластеров по форме и размерам.

В рамках релаксационной модели ДХ разделить крупно- и мелкомасштабные релаксационные процессы в ППГ невозможно [27-32]. Перестройка микроструктуры является результатом трех кооперативных процессов [27-32], представленных на рис. 1.

Рис. 1. Энергетическая схема двухуровневой системы [27-29, 31]: *а* — процесс, связанный с торсионными и либрационными внутримолекулярными колебаниями, **b** — внутрикластерный активационный релаксационный процесс, с — межкластерный процесс синхронного обмена молекулами

Согласно [31], круговая частота ζ самого быстрого процесса *a* [27, 28] соответствует центру полосы колебательных мод в ИКС. Две такие резонансные полосы поглощения $\varepsilon''(\omega)$ наблюдались в ИКС ППГ-400 [12] и были отнесены к торсионным и либрационным внутримолекулярным колебаниям. С другой стороны, в теории ДХ предполагается, что энергия $h\zeta/2\pi$, где h — постоянная Планка, характеризует положение вращательного уровня относительно основного колебательного состояния кластера в жидкостях [31]. Поэтому в работе [28] утверждается, что частота ζ равна параметру модели ДХ $B_{\rm DH}$, выраженному в нормированных единицах, т.е. $B_{\rm DH} = h\zeta N_{\rm A}/2\pi$, где $N_{\rm A}$ — число Авогадро. Значит, можно рассчитывать $\zeta_B = 2\pi f_B = 2\pi B_{\rm DH}/hN_{\rm A}$, где f_B — линейная частота.

Барьер Δ (см. рис. 1) включает не только активационный барьер $E_{DH_{th}}$, связанный с разрывом и образованием MBC, но и упомянутую выше энергию B_{DH} , и член kT_cM_e , учитывающий диполь-дипольные взаимодействия через характеристическую температуру T_c [29]:

$$\Delta = E_{\mathrm{DH}_{th}} + B_{\mathrm{DH}} + kT_{\mathrm{c}}M_{e}.$$
(5)

Если энергия теплового движения молекул, образующих кластер, достаточно велика, чтобы преодолеть активационный барьер Δ , наблюдается активационный процесс **b**. В этом случае изменение структуры кластера A_l связано с процессами разрыва и образования MBC $A_l \Leftrightarrow A_i + A_j$, когда меняется их общее число [35]. Корреляция процессов **b** характеризуется параметром n_{DH} .

Самыми медленными являются процессы *с* синхронного обмена молекулами между соседними кластерами (межкластерные обмены). Их можно рассматривать как процессы перераспределения MBC между кластерами $A_i + A_k \Leftrightarrow A_i + A_j$, когда меняется лишь расположение MBC, но не их общее число [31, 35]. Корреляция между такими процессами характеризуется параметром m_{DH} . Как показало компьютерное моделирование [31], обмены молекулами возможны, когда флуктуирующее менее упорядоченное окружение кластеров создает условия для "подбарьерного" трансляционного движения молекул. Аналогичные флуктуационные сдвиги участков кластерных границ рассматривали в поликластерной модели [21]. Конкретные примеры механизмов синхронного обмена молекулами между кластерами полимеров приведены в работе [31]. Данные процессы приводят к изменению распределения кластеров ППГ по размерам и форме [31, 36].

Величины, получаемые из экспериментальных ДРС, связаны с параметрами корреляции *n*_{DH} и *m*_{DH} уравнением [27—29]:

$$\frac{\varepsilon(\omega) - \varepsilon_{\infty \text{DH}}}{\varepsilon_{\text{s}} - \varepsilon_{\infty \text{DH}}} = \left(1 + i\frac{\omega}{\omega_{\text{DH}_{e}}}\right)^{n_{\text{DH}}-1} \frac{{}_{2}F_{1}[1 - n_{\text{DH}}, 1 - m_{\text{DH}}; 2 - n_{\text{DH}}; (1 + i\omega/\omega_{\text{DH}_{e}})^{-1}]}{{}_{2}F_{1}[1 - n_{\text{DH}}, 1 - m_{\text{DH}}; 2 - n_{\text{DH}}; 1},$$
(6)

где $_{2}F_{1}[...]$ — гипергеометрические функции Гаусса; $\varepsilon_{\infty DH}$ и ($\varepsilon_{s} - \varepsilon_{\infty DH}$) — высокочастотный предел и амплитуда области дисперсии $\varepsilon(\omega)$; частота релаксации $\omega_{DH_{e}} = 1/\tau_{DH_{e}}$. Значения $\tau_{DH_{e}}$, n_{DH} , m_{DH} , $\varepsilon_{\infty DH}$ ППГ были определены методом наименьших квадратов, использующим алгоритм минимизации Брента [37].

В работах [32, 36] показано, что параметры уравнений ГН (1) и ДХ (6) связаны между собой соотношениями $m_{\rm DH} = 1 - \alpha_{\rm HN}$ и $1 - n_{\rm DH} = \beta_{\rm HN}(1 - \alpha_{\rm HN})$. Отсюда следует, что уравнение (1) соответствует уравнению Дебая при $n_{\rm DH} = 0$, $m_{\rm DH} = 1$, $\omega_{\rm DH_e} = 1/\tau_{\rm D}$; уравнению КК – $m_{\rm DH} = 1 - \alpha_{\rm CC}$, $n_{\rm DH} = \alpha_{\rm CC}$, $\omega_{\rm DH_e} = 1/\tau_{\rm CC}$; уравнению ДК – $m_{\rm DH} = 1$, $1 - n_{\rm DH} = \beta_{\rm DC}$, $\omega_{\rm DH_e} = 1/\tau_{\rm DC_e}$.

В модели ДХ вводится единичный вектор M_e продольной компоненты среднестатистического дипольного момента кластера μ_c , связанный со средней разницей энергии между минимумами $2(B_{\text{DH}} = kT_cM_e)$ на энергетической диаграмме двухуровневой системы (см. рис. 1) следующим уравнением [27, 28]:

$$M_e = \tanh[(B_{\rm DH} + kT_{\rm c}M_e)/kT]. \tag{7}$$

Время релаксации суммарного кооперативного процесса ω_{DHth} определяется уравнением [27-29]:

$$\tau_{\mathrm{DH}_{th}} = \tau_{0\mathrm{DH}} \exp(\Delta/kT) / \cosh\left(\frac{B_{\mathrm{DH}} + kT_{\mathrm{c}}M_{e}}{kT}\right) \left\{1 - \frac{T_{\mathrm{c}}}{T}(1 - M_{e}^{2})\right\},\tag{8}$$

где $\tau_{0DH} = 1/v_{0DH}$; v_{0DH} — максимальная скорость перехода через минимальный [28] средний [29] активационный барьер Δ (см. рис. 1); k — постоянная Больцмана. В отличие от уравнений $\Phi\Phi$ T (3) и (4) уравнение ДХ (8) задает аналитически температурную зависимость $\tau_{DH_{th}}$ не через Δ , а через функцию

$$f(T) = \cosh\left(\frac{B_{\rm DH} + kT_{\rm c}M_e}{kT}\right) \left\{1 - \frac{T_{\rm c}}{T}(1 - M_e^2)\right\}.$$
(9)

Среднестатистический квадрат дипольного момента кластера $\langle \mu_c^2 \rangle$ может быть рассчитан из амплитуды области дисперсии $\varepsilon(\omega)$ [28]:

$$\varepsilon_{\rm s} - \varepsilon_{\infty \rm DH} = \left(\frac{\omega_{p\rm DH}}{\zeta}\right)^{n_{\rm DH}} \cos\left(\frac{n_{\rm DH}\pi}{2}\right) \frac{N_{\rm A}}{V_{\rm m}} \langle \mu_{\rm c}^2 \rangle \frac{(1 - M_e^2)}{kT} \left\{1 - \frac{T_{\rm c}}{T} (1 - M_e^2)\right\}^{-1} \frac{\Gamma(1 - n_{\rm DH})}{m_{\rm DH}}, \qquad (10)$$

где Г(1 – *n*_{DH}) — гамма-функция; *V*_m — молярный объем.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Диэлектрическая проницаемость $\varepsilon'(\omega)$ и потери $\varepsilon''(\omega)$ ППГ Н—(C₃H₆O)_{Np}—OH приведены в работах [1—3] для частот 1,1 МГц, 3,0, 9,375, 37,69 и 71,94 ГГц в интервале температур 303—423 К. Согласно изложенному выше, значения $\varepsilon'(\omega)$ и $\varepsilon''(\omega)$ позволяют определить с помощью уравнения (6) время релаксации τ_{DH_e} , параметры n_{DH} , m_{DH} , амплитуду области дисперсии ($\varepsilon_s - \varepsilon_{\infty DH}$). Нами были проанализированы данные при двух температурах — 303 и 423 К (табл. 1). Предполагалось, что значения ε_s равны диэлектрической проницаемости ε' на частоте 1,1 МГц. Высокочастотные пределы $\varepsilon_{\infty DH}$ подбирали таким образом, чтобы они были выше диэлектрической проницаемости $\varepsilon_{\infty def}$, обусловленной деформационной поляризацией химических связей P_{∞} ППГ [2, 35, 38]. Значения $\varepsilon_{\infty def}$ (см. табл. 1) рассчитывали с помощью уравнения Клаузиуса—Моссоти $\varepsilon_{\infty def} = (V_m = 2P_{\infty})/(V_m - P_{\infty})$, в котором $P_{\infty} = (6P_{C-H} + 2P_{C-C} + 2P_{C-O})N_p +$ $+ 2P_{O-H}$ [38]. Необходимые для расчетов значения плотностей ППГ и деформационные поляризации химических связей $P_{C-H} = 1,70$ см³, $P_{C-C} = 1,22$ см³, $P_{C-O} = 2,15$ см³, $P_{O-H} = 2,61$ см³ были взяты из работ [2, 38].

Найденные нами параметры ε_s , $\varepsilon_{\infty DH}$, τ_{DHe} , n_{DH} , m_{DH} представлены в табл. 1. Время релаксации τ_{DH_m} определяли путем интерполяции расчетов по уравнению ДХ (6) с использованием этих значений. Величины τ_{DH_m} меньше времен релаксации τ_{DH_e} . При $N_p \ge 7$ они различаются практически в 2 раза.

При 303 К ДРС ППГ описываются уравнением ДХ (6) с точностью ±10 %. Следует отметить, что с учетом отличия температур найденные нами $\varepsilon_s = 8,5$, $\varepsilon_{\infty DH} = 2,30$, $n_{DH} = 0,57$, $\tau_{DH_m} = 5,56 \cdot 10^{-10}$ с для ППГ-425 при 303 К согласуются с приведенными в работе [12] параметрами уравнения КК $\varepsilon_s = 8,70$, $\varepsilon_{\infty CC} = 2,45$, $\alpha_{CC} = 0,58$, $\tau_{CC} = 4,8 \cdot 10^{-10}$ с, описывающими ДРС ППГ-400 при 298 К. С повышением температуры до 423 К погрешность расчета $\delta\varepsilon''$ на частотах 37,69 и 71,94 ГГц увеличивается до 15 %. Это может быть связано с тем, что с ростом температуры увеличивается вклад ВЧ мелкомасштабных релаксационных процессов в дисперсию $\varepsilon(\omega)$ [15, 35], поэтому при 423 К описание ДРС ППГ одним уравнением ДХ (6) без выделения ВЧ области может приводить к росту ошибок $\delta\varepsilon''$.

При сравнении найденных нами n_{DH} с результатами обработки ДРС ППГ в работах [4, 5, 9] необходимо учитывать следующее. Простые алгебраические соотношения, связывающие параметры уравнений ГН (1), КВВ (2) и ДХ (6), отсутствуют [32, 39], поэтому без дополнительных расчетов можно сравнивать не сами параметры n_{DH} и 1 – β_{KWW} , а их зависимость от ММ и температуры. Как видно из табл. 1 и 2, параметры n_{DH} и 1 – $\beta_{\text{KWW}}(T_{\text{gd}})$ [4] увеличиваются

971

Таблица 1

Shudenus napumempos ypuonenuu $\Delta X(0)$ u $\Phi \Phi I(5)$												
Вещество	ПГ	ди-ПГ	ППГ-200	ППГ-425 ППГ-102		ППГ-1200	ППГ-2025					
N_p	1	2	3	7	17,2	20	34,5					
<i>T</i> = 303 K												
ϵ_s	28,4	19,0	14,7	8,5	6,25	6,0	5,5					
$\epsilon_{\infty def}$	2,29	2,26	2,18	2,23	2,21	2,20	2,22					
$\epsilon_{\infty DH}$	3,18	2,57	2,50	2,30	2,29	2,35	2,19					
$\varepsilon_s - \varepsilon_{\infty DH}$	25,22	16,43	12,2	6,2	3,96	3,65	3,31					
$n_{\rm DH}$	0,277	0,517	0,502	0,570	0,621	0,581	0,638					
$m_{\rm DH}$	0,971	0,940	0,935	0,955	0,844	0,975	0,879					
$\tau_{DHe} \cdot 10^9$, c	0,282	2,77	1,20	1,07	1,25	1,04	1,15					
$\tau_{\rm DHm} \cdot 10^{10}$, c	2,26	16,0	7,14	5,56	6,06	5,13	5,71					
$\tau_{VFT} \cdot 10^{10}, c^*$	3,08	—	4,72	2,31		_	8,04					
<i>T</i> = 423 K												
ϵ_s	14,9	8,5	7,4	5,7	4,4	4,3	4,0					
$\epsilon_{\infty DH}$	2,31	2,25	2,27	2,09	2,07	2,04	2,05					
$\epsilon_{\infty def}$	2,12	2,10	2,03	2,08	2,07	2,04	2,07					
$\varepsilon_s - \varepsilon_{\infty DH}$	12,59	6,25	5,13	3,61	2,33	2,26	1,95					
$n_{\rm DH}$	0,215	0,289	0,277	0,422	0,529	0,530	0,573					
$m_{\rm DH}$	0,710	0,999	0,989	0,999	0,916	0,999	0,999					
$\tau_{\mathrm{DH}e} \cdot 10^{11}, \mathrm{c}$	0,634	1,25	1,10	2,10	3,57	4,38	6,41					
$\tau_{\mathrm{DH}m} \cdot 10^{11}, \mathrm{c}$	0,524	0,955	0,850	1,36	2,27	2,45	3,26					
$\tau_{VFT} \cdot 10^{11}, c^*$	0,512		0,964	2,10		—	2,25					

Значения параметров уравнений ДХ (6) и ФФТ (3)

* Рассчитаны по данным работы [4].

с ростом ММ. Однако для ППГ-400 и ППГ-4000 параметры $1 - \beta_{KWW}(T_{gd}) = 0,56$ [8] и $1 - \beta_{KWW}(295 \text{ K}) = 0,49$ [9] различались по величине из-за отличия температур, но в обоих случаях не зависели от ММ, начиная с $N_p \ge 7$. Найденные нами n_{DH} не достигли предельного значения во всем изученном интервале $2 \le N_p \le 34,5$ при 303 и 423 К. Согласно нашим данным, в анализируемом интервале температур параметры n_{DH} и m_{DH} зависят от температуры (см. табл. 1). По мере удаления от температуры стеклования $T_{gd} = 195 \text{ K}$ для ди-ПГ наблюдалось лишь незначительное уменьшение от $1 - \beta_{KWW}(T_{gd}) = 0,33$ до $1 - \beta_{KWW}(225 \text{ K}) = 0,32$ [5].

Для нахождения параметров v_{0DH} , Δ , B_{DH} , T_c , M_e , ζ в уравнениях ДХ (8)—(10) при температурах ниже 303 К были использованы результаты описания температурной зависимости времени релаксации ППГ уравнениями ФФТ (3) и (4) в работах [4, 5], параметры которых указаны в табл. 2 ($\tau_{VFT} = \tau_m = 1/2\pi f_m$). Различия между величинами τ_{VFT} при одних и тех же N_p в работах [4, 5] увеличиваются по мере приближения к T_{gd} (см. табл. 2).

В ППГ, способных к кристаллизации (MM $\ge 10^4$ [34]), вероятно, существуют кластеры с параллельно расположенными ОП цепочками, подобные кластерам в полиэтиленгликолях (ПЭГ) [34, 40, 41]), поскольку они содержат фракции с изотактической структурой (CH₃-группы двух соседних звеньев расположены по разные стороны от плоскости цепи). Однако кластеры такого типа не могут образовываться в анализируемых нами ППГ с MM \le 4000, так как молекулы этих веществ содержат примерно равные количества изо- и синдиотактических диад,

Таблица 2

	ΠГ	три-ПГ	ППГ- 425	ППГ-725	ППГ-2000	ППГ-4000	ΠГ	ди-ПГ	три-ПГ	ППГ-69	
Параметр	10 ⁻³ —10 ¹⁰ Гц, 174—323 К [4]							10 ⁻⁴ —10 ⁴ Гц, 165—234 К [5]			
MM	76	192	425	725	2000	4000	76	134	192	4000	
N_p	1	3	7	12	34	69	1	2	3	69	
$T_{\rm gd},{\rm K}$	169	192	197	200	201	201	168	195	193	198	
$T_{\infty \rm VFT}$, K	116	155	162	169	171	172	120,4	143,9	155,4	170,1	
$1 - \beta_{\rm KWW}(T_{\rm gd})$	0,33	0,46	0,56	—	—	0,56	0,28	0,33		—	
$\tau_{\infty VFT} \cdot 10^{14}$, c	0,863	7,93	3,32	20,9	43,9	37,6	11,2	0,054	5,13	229	
$\tau_{\zeta} \cdot 10^{14}$, c	3,21	2,48	2,28	2,24	2,23	2,23	3,48	3,00	3,03	2,96	
$U_{\infty m VFT}$, кДж/моль	16,3	10,7	10,4	8,7	8,2	8,0	13,6	16,8	10,9	7,3	
$U_{g m VFT}$, кДж/моль	52	56	59	56	56	58	48	64	56	52	
$\tau_{VFT1} \cdot 10^3$, c*	—	1,14	6,43	26,3	48,6	38,3	—	10,2	1,40	8,34	
$\tau_{VFT2} \cdot 10^{6}, c^{*}$	0,254	2,23	3,08	6,04	8,77	6,13	—	8,41	2,23	5,35	
$B_{\rm DH}$, кДж/моль	1,97	2,55	2,78	2,83	2,84	2,84	1,82	2,11	2,09	2,14	
f_B , ТГц	4,95	6,41	6,98	7,11	7,13	7,13	4,57	5,30	5,25	5,38	
$f_{0\mathrm{DH}},$ ТГц	18,44	2,01	4,79	0,792	0,363	0,423	1,42	295	3,10	0,07	
$ H_{\rm DH} - H_{\rm DH_{th}} ,$	0,07	0,21	0,24	0,38	0,45	0,45	0,02	0,01	0,11	0,17	
кДж/моль											

Молекулярная масса, число оксипропиленовых групп N_p , температура стеклования T_{gd} , параметры уравнений ФФТ (3), (4), КВВ (2) и ДХ (8)—(10)

* т_{VFT1} при 210 К и т_{VFT2} при 230 К рассчитаны по данным работы [4].

а их ОП цепь представляет собой нерегулярную в стереохимическом смысле последовательность с нарушением чередования СН₃-групп в цепи [34]. Действительно, в ПЭГ-1500 и ППГ-2000, имеющих равное число мономерных звеньев *N*, из-за меньшей гибкости закрученных цепочек молекул ППГ-2000 переориентация сегментов в них более заторможена, чем в кластерах с параллельным расположением молекул в ПЭГ-1500 [10].

Из приведенных в табл. 1 результатов анализа экспериментальных ДРС ППГ наибольший интерес представляет зависимость m_{DH} от N_p . При 303 К с ростом числа ОП групп $N_p \ge 2$ параметр m_{DH} уменьшается ($m_{DH} = 0.95912 - 0.00175N_p$), что соответствует усилению корреляции $1 - m_{DH}$ процессов синхронного обмена молекулами между соседними кластерами. При 423 К значение m_{DH} примерно постоянно в интервале $N_p = 2 - 34,5$ и равно 0,999, что свидетельствует о том, что при этой температуре межкластерные корреляции практически отсутствуют, т.е. процессы синхронного обмена происходят свободно, как в жидкостях с идеальным гидродинамическим движением [27—29, 31].

Параметр n_{DH} , отражающий корреляцию процессов перестройки структуры самих кластеров $A_l \Leftrightarrow A_i + A_j$, уменьшается с ростом температуры, при этом в отличие от m_{DH} с ростом числа ОП групп n_{DH} и время релаксации τ_{DH_e} ППГ увеличиваются вплоть до $N_p = 34,5$ (см. табл. 1).

Зависимость τ_{VFT} от N_p усиливается с понижением температуры. По данным работы [4], во всем интервале температур от 210 до 323 К значения τ_{VFT} сначала увеличиваются с ростом N_p ($2 \le N_p \le 34$), а при дальнейшем увеличении N_p ($34 < N_p \le 69$) — уменьшаются.

Температурные зависимости времен релаксации ППГ, объединяющие значения τ_{VFT} из работ [4, 5] и найденные нами τ_{DH_m} , были описаны полиномами пятой степени $\tau_{DH_1} = a_0 + a_1/T + a_2/T^2 + a_3/T^3 + a_4/T^4 + a_5/T^5$ с погрешностями, не превышающими 1,1 %. Значения τ_{DH_1} использованы для расчета кажущихся энтальпий активации H_{DH_e} по уравнению [14, 15, 19]:

Рис. 2 (слева). Зависимость кажущейся энтальпии активации H_{DH_e} от 1/Т: 1 — ПГ, 2 — три-ПГ, 3 — ППГ-425, 4 — ППГ-725, 5 — ППГ-2000, 6 — ППГ-4000 (расчет по данным [4]), 7 — ПГ, 8 ди-ПГ, 9 — три-ПГ, 10 — ППГ-4000 (расчет по данным [5])

Рис. 3 (справа). Зависимость кажущейся энтальпии активации H_{DH_e} (1—3) и энергия активации E_{DH} (4—6) ППГ от N_p : 1, 4—210 K, 2, 5—240 K, 3, 6—303 K

$$H_{\rm DH_a} = k[d(\ln \tau_{\rm DH_1})/d(1/T)].$$
(11)

Зависимости H_{DH_e} от 1/*T* и N_p при низких температурах представлены на рис. 2 и 3. Выше 313 К зависимости $H_{DH_e}(1/T)$ подчиняются уравнению Аррениуса.

При 240 К найденное нами значение $H_{DH_e} = 93$ кДж/моль для ППГ-4000 практически совпадает с приведенной в работе [9] величиной 90 кДж/моль. При 303 К и $N_p \le 7$ значения H_{DH_e} близки к энергиям MBC E_H ППГ с $N_p = 1$ —8, рассчитанным в работе [42]. С увеличением MM величины H_{DH_e} растут от 42 до 47 кДж/моль до $N_p \le 7$. В интервале $7 < N_p \le 12$ величина H_{DH_e} ППГ уменьшается до 44 кДж/моль и затем при $12 < N_p \le 69$ остается практически постоянной (в пределах ± 2 кДж/моль). Эти значения H_{DH_e} лежат между величинами энергий активации вязкого течения $E_{\eta}(1/T)$, соответствующими среднему (35 кДж/моль) и высокотемпературному (52 кДж/моль) линейным участкам, выделенным из нелинейной зависимости $E_{\eta}(1/T)$ ППГ с MM = 540—9000 в интервале температур 263—353 К в работе [33].

Хотя строение кластеров в анализируемых нами ППГ, по всей видимости, отличается от строения кластеров в ПЭГ, релаксационные механизмы перестройки их структуры, вероятно, похожи [40, 41]. Крупномасштабный суммарный релаксационный процесс НЧ областей в ДРС ППГ связан с сегментальной подвижностью в процессах разрыва и образования новых MBC между водородом и кислородом О—Н-групп (ОН...ОН) и между водородом О—Н-группы и кислородом —С—О—С-группы (ОН...О—) соседних полимерных молекул (α-релаксация), а также с переориентацией молекулы как целого (α'-релаксация). Мелкомасштабный суммарный релаксационный процесс связан с внутримолекулярными крэнкшафтными движениями свободных —С—О—С-групп, которые не участвуют в образовании MBC, вокруг главной полимерной оси и с переориентацией свободных О—Н-групп.

С ростом ММ концентрация ОН-групп уменьшается, в то время как концентрация эфирного кислорода практически не меняется. Вследствие этого вероятность образования менее прочных ОН...О-связей увеличивается, а вероятность образования более прочных связей ОН...ОН между сегментами соседних полимерных молекул уменьшается, как и в ПЭГ [43]. При понижении температуры вероятность образования и тех, и других связей возрастает. С увеличением количества молекул в кластерах ППГ энтальпия H_{DH_e} растет, при этом, как было отмечено выше, в интервале температур 240—303 К значение H_{DH_e} почти не меняется с ростом ММ ППГ при $12 < N_p \le 69$ (см. рис. 3). В работе [33] плотность, вязкость и ИК спектры зависели от ММ

ППГ до более высоких $N_p \le 26$. Резкое увеличение H_{DH_e} по мере приближения к T_{gd} и усиление зависимости от N_p (см. рис. 3) может быть связано с изменением межкластерной структуры: кластеры с высокими степенями ассоциации и отличающимися друг от друга структурами начинают объединяться в агрегаты [30], в результате синхронные обмены молекулами между кластерами затрудняются. Вероятно, по этой причине резко возрастает и время релаксации: для ППГ-2000 от $\tau_{VFT}(230 \text{ K}) = 8,77 \cdot 10^{-6} \text{ с до } \tau_{VFT}(210 \text{ K}) = 4,86 \cdot 10^{-2} \text{ с, для ППГ-4000 от } \tau_{VFT}(230 \text{ K}) = 6,33 \cdot 10^{-6} \text{ с}$ до $\tau_{VFT}(210 \text{ K}) = 3,83 \cdot 10^{-2} \text{ с [8]. По-видимому, и для параметра <math>m_{DH}$, характеризующего межкластерную структуру, с понижением температуры возможно усиление зависимости от N_p , как это имеет место для H_{DH_e} и τ_{VFT} .

Анализ нелинейных температурных зависимостей времен релаксации $\tau_{DH_{th}} = 1/\omega_{DH_{th}} \Pi\Pi\Gamma$ с помощью уравнения ДХ (8) требует подбора параметров τ_{0DH} , Δ , $E_{DH_{th}}$, B_{DH} , T_c .

Следуя [28, 29], характеристические температуры T_c выбирали равными температурам стеклования T_{gd} ППГ (см. табл. 2).

Величину B_{DH} находили следующим образом. Если в уравнении (11) заменить τ_{DH1} на $\tau_{DH_{th}}$, то, используя уравнения (5), (7) и (8), получим для H_{DH} следующее выражение:

$$H_{\rm DH} = H_{\rm DH_{th}} + (1 - M_e) \left[B_{\rm DH} + kT_e M_e + k \frac{T_c}{T} \frac{dM_e}{d(1/T)} \right] + k \frac{T_c (1 - M_e^2) - 2M_e \frac{T_c}{T} \frac{dM_e}{d(1/T)}}{1 - T_c (1 - M_e^2)/T}, \quad (12)$$

полагая, что $H_{\text{DH}_{th}} = E_{\text{DH}_{th}} + \partial E_{\text{DH}_{th}} / \partial (1/T)$. С помощью этого уравнения можно подобрать величину B_{DH} , которая, согласно [28], не зависит от температуры.

Значения $B_{\rm DH}$ (см. табл. 2) соответствуют тому случаю, когда в уравнении ДХ (12) различия $|H_{\rm DH} - H_{\rm DH_{th}}| \le 0.30$ кДж/моль. Видно, что при увеличении $N_p B_{\rm DH}$ почти не меняется (при $N_p \ge 2$ при расчете по данным [5] $B_{\rm DH} \approx 2.1$ кДж/моль, при использовании данных [4] $B_{\rm DH} \approx 2.8$ кДж/моль при $N_p \ge 7$).

Определив B_{DH} , можно было рассчитывать M_e по уравнению (7) и, соответственно, среднюю разницу энергий между минимумами $2(B_{\text{DH}} + kT_cM_e)$. Энергии $B_{\text{DH}} + kT_cM_e$, найденные по данным работ [4, 5], различаются по величине, но в обоих случаях слабо зависят от температуры (рис. 4). С ростом N_p от 3 до 12 (для три-ПГ, ППГ-425, 725) значение $B_{\text{DH}} + kT_cM_e$ увеличивается, а начиная с ППГ-2000 остается постоянным при $34 \le N_p \le 69$. Энергии $B_{\text{DH}} + kT_cM_e$ того же порядка, что и энергии диполь-дипольных ориентационных взаимодействий полимерных цепей E_{dd} ППГ при $N_p = 1$ —8 в работе [42].

Для определения других параметров: τ_{0DH} , Δ , $E_{DH_{th}}$ — в качестве первого приближения использовали уравнение ФФТ (3). Величину τ_{0DH} полагали равной $\tau_{\infty VFT}$ (см. табл. 2).

Величины $\tau_{\infty VFT}$ меняются в широких пределах. За исключением ди-ППГ и ППГ-69, они того же порядка, что и времена релаксации $\tau_{IR_m} = 1/2\pi f_{IR_m} \approx 1.6 \cdot 10^{-13}$ с и $3.2 \cdot 10^{-14}$ с, соответствующие максимумам f_{IR_m} полос резонансного поглощения ИКС для ППГ-400 при 298 К [12].

Подставив в уравнение (8) времена $\tau_{DH_{th}} = \tau_{DH_e}$, $\tau_{0DH} = \tau_{\infty VFT}$ и выбранные выше B_{DH} , $T_c = T_{gd}$, M_e , можно определить $\Delta = kT \{ \ln[f(T)\tau_{DH_e}] - \ln\tau_{\infty VFT} \}$. За счет функции f(T) значения Δ выше U_{VFT} . Затем с помощью уравнения (5) были рассчитаны значения энергии активации $E_{DH} = \Delta - B_{DH} - kT_cM_e$. Температурную зависимость E_{DH} уточняли с помощью полинома $E_{DH} = ax + bx^2 + cx^3 + dx^4$, где $x = T/(T - T_{\infty VFT})$, используя уравнение ФФТ (4) как первое приближение.

Зависимость энергии активации E_{DH} ППГ от N_p и 1/*T* представлена на рис. 3 и 4. Температурные зависимости энергий активации E_{DH} ППГ, полученные по данным работ [4, 5], отлича-

Рис. 4. Зависимость энергии активации E_{DH} (1—10) и энергии $B_{\text{DH}} + kT_cM_e$ (1'—10') от 1/T: 1, 1' — ПГ, 2, 2' — три-ПГ, 3, 3' — ППГ-425, 4, 4' — ППГ-725, 5, 5' — ППГ-2000, 6, 6' — ППГ-4000 (рассчитаны по данным работы [4]), 7, 7' — ПГ, 8, 8' — ди-ПГ, 9, 9' — три-ПГ, 10, 10' — ППГ-69 (рассчитаны по данным работы [5])

ются (см. рис. 4). Зависимость E_{DH} от MM наблюдается до $N_p \le 12$ (см. рис. 3), при $N_p > 12$ различие значений E_{DH} ППГ-2000 и 4000 не превышает 0,5 кДж/моль.

При сделанных выше предположениях различия между величинами $\tau_{DH_{th}}$, рассчитанными по уравнению ДХ (8), и τ_{VFT} [4, 5] не превышали 2 %.

Таким образом, модель ДХ позволяет описывать нелинейную температурную зависимость времени релаксации ППГ и, в отличие от уравнений ФФТ (3) и (4), разделять энергии активации E_{DH} и диполь-дипольных ориентационных взаимодействий цепей $B_{\text{DH}} + kT_cM_e$.

Как видно из табл. 1 и 2, необходимый для вычисления среднестатистических квадратов дипольных моментов кластеров $\langle \mu_c^2 \rangle$ по уравнению ДХ (10) набор параметров был доступен только для ПГ, ди-ПГ, ППГ-425 и ППГ-2000 при 303 и 423 К. Кроме того, поскольку параметры $B_{\rm DH}$ находили из температурной зависимости времени релаксации $\tau_{\rm VFT}$ [4, 5], близкого к значениям $\tau_{\rm DH_m}$ [8, 9] (см. табл. 1), в уравнение ДХ (10) вместо $\omega_{\rm DH_e} = 1/\tau_{\rm DH_e}$ подставляли величины $\omega_{\rm DH} = 1/\tau_{\rm DH_m}$.

Как отмечается в работах [27, 28, 31], частота ζ , необходимая для расчета по уравнению (10), может меняться в интервале $0 < \zeta \le v_{0DH}$. Было предложено два способа выбора ее величины. Первый способ, рассмотренный выше, позволил нам рассчитать линейные частоты ППГ $f_B = B_{DH}/hN_A$ (см. табл. 2). Найденные значения f_B находятся в области частоты второго максимума $f_{IR_m} \approx 5$ ТГц в ИКС ППГ-400 при 298 К [12]. Но здесь следует отметить еще один важный факт. В отличие от ППГ-400, ИКС ПГ изучен в широком интервале температур — 184—363 К [44]. Согласно этим экспериментальным данным, частоты максимумов обоих резонансных пиков f_{IR_m} ПГ практически не зависят от температуры. Таким образом, подтверждается справедливость сделанного выше предположения о независимости параметра B_{DH} от температуры.

Но в работе [28] предлагается и второй приближенный способ оценки ζ : соотнесение с частотой $v_{0DH} = 1/\tau_{0DH} = 1/\tau_{\infty VFT}$. В табл. 2 приведены значения $f_{0DH} = 1/2\pi\tau_{\infty VFT}$. В отличие от частот f_B , которые для анализируемых ППГ являются величинами примерно одного порядка, между значениями f_{0DH} наблюдается большой разброс. Такое различие, вероятно, является следствием разных способов определения $\tau_{\infty VFT}$ и B_{DH} . Значения $\tau_{\infty VFT}$ были получены в работах [4, 5] при описании уравнением ФФТ (3) экспериментальных времен релаксации τ_m . Величины B_{DH} выбирались нами на основании усредненных с помощью этого уравнения значений τ_{VFT} .

При расчетах дипольных моментов кластеров $\langle \mu_c^2 \rangle$ в уравнение (10) подставляли $\omega_{DH} = 1/\tau_{DH_m}$, $\zeta_B = 2\pi f_B$, $\zeta_{0DH} = 2\pi f_{0DH}$. Как и следовало ожидать, в случае $\zeta_{0DH} = 2\pi f_{0DH}$ наблюдался большой разброс величин $\langle \mu_c^2 \rangle$ ППГ. При использовании $\zeta_B = 2\pi f_B$ такого большого разброса не было, но значения $\langle \mu_c^2 \rangle$ получались большими, и линейная зависимость от N_p наблюдалась только для μ_c : $\mu_c(303 \text{ K}) = 335,44 + 27,65N_p$ и $\mu_c(423 \text{ K}) = 19,53 + 6,69N_p$ (рис. 5).

Зависимость $\mu_c = a + \mu_0 N_p$ позволяет оценить число звеньев, переориентирующихся в процессе релаксации. Будем считать, что коэффициент μ_0 характеризует суммарный дипольный момент переориентирующихся ОП групп, а дипольный момент — OCHCH₃CH₂-группы при*Рис.* 5. Зависимость μ_c , $\langle \mu_m^2 \rangle$ и $\langle \mu_v^2 \rangle$ ППГ (*1*—4) и ПЭГ (5, 6) от N_p : *1* — μ_c при 303 K, 2 — μ_c при 423 K, 3 — $\langle \mu_m^2 \rangle$ при 303 K [2, 3], 4 — $\langle \mu_m^2 \rangle$ при 423 K [2, 3], 5 — $\langle \mu_v^2 \rangle$ ППГ при 293 K [46], 6 — $\langle \mu_v^2 \rangle$ ПЭГ при 293 K [46]

мерно равен дипольному моменту молекулы дипропилового эфира C_3H_7 —О— C_3H_7 в газовой фазе $\mu_{\nu} = 1,18$ Д [45]. Тогда число переориентирующихся ОП групп μ_0/μ_{ν} получается порядка 23,4 при 303 К и 5,7 при 423 К. В про-

цессе релаксации участвуют ОП цепочки двух соседних молекул. Поэтому среднее число переориентирующихся ОП звеньев *s* одной молекулы равно 12,7 и 2,85 соответственно. Когда величины *s* меньше N_p , они определяют размер переориентирующего сегмента. При 303 К это условие выполняется только в ППГ-2025, а при 423 К — в ППГ-425 и ППГ-2025. В ди-ПГ значения *s* больше N_p . Вероятно, это обусловлено тем, что, кроме переориентации ОП групп, значителен вклад переориентации концевых ОН-групп, дипольный момент которых не учитывался при оценках *s*.

На рис. 5 значения μ_c сравниваются со среднестастическими квадратами дипольных моментов молекул ППГ в газовой фазе $\langle \mu_{\nu}^2 \rangle$, измеренных в работе [46], и в жидкой фазе $\langle \mu_m^2 \rangle$, рассчитанных по формуле Онзагера—Кирквуда—Фрелиха (ОКФ) [35, 47], учитывающей ближний ориентационный порядок соседних молекул:

$$\langle \mu_m^2 \rangle = g \langle \mu_v^2 \rangle = \frac{9V_m kT}{4\pi N_A} \frac{(\varepsilon_s - \varepsilon_{\infty def})(2\varepsilon_s + \varepsilon_{\infty def})}{\varepsilon_s (\varepsilon_{\infty def} + 2)^2},$$
(13)

где *g* — фактор корреляции ОКФ, учитывающий ассоциацию молекул.

Как отмечалось выше, в уравнениях ДХ (5)—(10) в явном виде не учитывается ориентация как дипольных моментов звеньев в молекулах ППГ, так и самих молекул в кластерах, поэтому количественно определять степень ассоциации отношениями μ_c/μ_v или μ_c/μ_m нельзя.

Изменения $\langle \mu_{\nu}^2 \rangle$ и $\langle \mu_m^2 \rangle$ ППГ описываются линейной зависимостью: $\langle \mu_{\nu}^2 \rangle = (2,59)^2 + (0,98)^2 N_p$ при 293 K, $\langle \mu_m^2 \rangle = (3,23)^2 + (1,003)^2 N_p$ при $N_p \ge 7$ и 303 K и $\langle \mu_m^2 \rangle = (2,97)^2 + (1,03)^2 N_p$ при $N_p \ge 3$ и 423 K с погрешностью меньше 10 % (см. рис. 5). Аналогичную линейную зависимость наблюдали для ПЭГ: $\langle \mu_{\nu}^2 \rangle = (1,83)^2 + (1,06)^2 N_p$ [46] и $\langle \mu_{\nu}^2 \rangle = (2,04)^2 + (1,06)^2 N_p$ [48] при $N_p \ge 1$ и 293 K, $\langle \mu_m^2 \rangle = (3,1)^2 + (1,4)^2 N_p$ при $N_p \ge 1$ и 343 К [49]. Коэффициенты μ_0 для $\langle \mu_{\nu}^2 \rangle$ ППГ и ПЭГ близки к дипольному моменту связи С—О $\mu_{CO} = 1,04$ Д в диэтиловых эфирах ПЭГ [50].

Если предположить, что величина $\langle \mu_{\nu}^2 \rangle$ ПЭГ и ППГ не зависит от температуры, тогда можно оценить фактор корреляции ОКФ по уравнению (13) $g = \langle \mu_m^2 \rangle / \langle \mu_{\nu}^2 \rangle$. В зависимости от выбранного значения $\langle \mu_{\nu}^2 \rangle$ для ПЭГ при 343 К с ростом N_p от 2 до 34 g уменьшается от 2,13 до 1,78 [48, 49] или от 2,56 до 1,86 [46, 49], а для ППГ с ростом N_p от 7 до 34 — только от 1,29 до 1,13. Величины g > 1 свидетельствуют о стремлении дипольных моментов соседних молекул к параллельной ориентации. Более высокие значения g для ПЭГ согласуются с отмеченным выше параллельным расположением полиоксиртиленовых цепей в кластерах. Наличие боковых СН₃-групп приводит к закручиванию полиоксипропиленовых цепочек [8, 34], и структура ППГ становится менее упорядоченной.

Различие молекулярной структуры ПЭГ и ППГ проявляется в поведении $\langle \mu_m^2 \rangle$. Для $\langle \mu_m^2 \rangle$ ПЭГ величина μ_0 близка к значению дипольного момента диметилового эфира CH₃—O—CH₃ $\mu_v = 1,28 - 1,32 \, \text{Д}$ [45], который может рассматриваться как дипольный момент ОЭ-группы —СН₂—О—СН₂— [48]. Для $\langle \mu_m^2 \rangle$ ППГ величина μ_0 меньше дипольного момента дипропилового эфира С₃H₇—О—С₃H₇ $\mu_v = 1,18$ Д [45], который по аналогии следовало бы рассматривать как дипольный момент ОП группы —С₃H₆—О—С₃H₆—. Но значение μ_0 , во-первых, близко к дипольному моменту связи С—О μ_{CO} , как и для $\langle \mu_v^2 \rangle$; во-вторых, $\langle \mu_m^2 \rangle$ зависит от ММ, в то же время при $N_p \ge 20 \langle \mu_m^2 \rangle$ ППГ практически не зависит от температуры в интервале 303—423 К (см. рис. 5).

В отличие от $\langle \mu_m^2 \rangle$ ППГ дипольные моменты кластеров μ_c при $N_p \ge 2$ убывают с ростом температуры (см. рис. 5), т.е. они более чувствительны к изменению микроструктуры ППГ при разрушении MBC и BMC.

выводы

Одновременный анализ амплитуды и времени релаксации ДРС ППГ с помощью уравнений ДХ (5)—(10) в широком интервале частот и температур позволяет получать информацию об энергиях процессов перестройки микроструктуры ППГ, дипольных моментах кластеров и сегментов, переориентирующихся при разрывах и образовании MBC.

СПИСОК ЛИТЕРАТУРЫ

- 1. Онищенко С.Г., Левин В.В. // Вестн. Моск. ун-та. Химия. 1974. № 2. С. 241 243; Там же. 1975. № 3. С. 287 289.
- 2. Онищенко С.Г., Левин В.В. 1976. 13 с. Деп. в ВИНИТИ 09.04.76, № 2220.
- 3. Левин В.В. 1986. 502 с. Деп. в ВИНИТИ 21.02.86, № 2940.
- 4. Park I.S., Saruta K., Kojima S. // J. Phys. Soc. Jpn. 1998. 67, N 12. P. 4131 4138.
- 5. Leon C., Ngai K.L., Roland C.M. // J. Chem. Phys. 1999. 110, N 23. P. 11585 11591.
- 6. Bauer M.E., Stockmayer W.H. // Ibid. 1965. 43, N 12. P. 4319 4325.
- 7. Johari G.P. // Polymer. 1986. 26, N 6. P. 866.
- 8. Schönhals A., Stauga R. // J. Chem. Phys. 1998. 108, N 12. P. 5130 5136.
- 9. Andersson S.P., Andersson O. // Macromolecules. 1998. 31, N 9. P. 2999 3006.
- 10. Sengwa R.J. // J. Mol. Liq. 2003. 108, N 1-3. P. 47 60.
- 11. Casalini R., Roland C.M. // Phys. Rev. B. 2004. 69, N 9. P. 094202-1 094202-7.
- 12. Xu M., Eyring E.M., Petrucci S. // J. Chem. Soc., Faraday Trans. 1996. 92, N 24. P. 4969 4976.
- 13. Havriliak S., Negami S. // Polymer. 1967. 8, N 8. P. 161 210.
- 14. Бартенев Г.М., Бартенева А.Г. Релаксационные свойства полимеров. М.: Химия, 1992.
- 15. Бартенев Г.М., Зеленев Ю.В. Курс физики полимеров. Л.: Химия, 1976.
- 16. Перепечко И.И. Свойства полимеров при низких температурах. М.: Химия, 1977.
- 17. Перепечко И.И. Введение в физику полимеров. М.: Химия, 1978.
- 18. Бартенев Г.М., Ломовской В.А. // Журн. физ. химии. 2003. 77, № 12. С. 2266 2276.
- 19. *Ферри Дж.* Вязкоупругие свойства полимеров. М.: Изд-во иностр. лит., 1963. *Ferry J.D.* Viscoelastic properties of polymers. N. Y. L., 1961.
- 20. Гольданский В.И., Трахтенберг Л.И., Флеров В.Н. Туннельные явления в химической физике. М.: Наука, 1986.
- 21. Бакай А.С. Поликластерные аморфные тела. М.: Энергоатомиздат, 1987.
- 22. Ростиашвили В.Г., Иржак В.И., Розенберг Б.А. Стеклование полимеров. Л.: Химия, 1987.
- 23. Leon C., Ngai K.L. // J. Phys. Chem. B. 1999. 103, N 20. P. 4045 4051.
- 24. Ngai K.L., Lunkenheimer P., Leon C. et al. // J. Chem. Phys. 2001. 115, N 3. P. 1405 1413.
- 25. *Ngai K.L.* // J. Non-Cryst. Solids. 2005. **351**. P. 2635 2642.
- 26. Adam G., Gibbs J.H. // J. Chem. Phys. 1965. 43, N 1. P. 139 146.
- 27. Dissado L.A., Hill R.M. // Nature. 1979. 279. P. 685 689.
- 28. Dissado L.A., Hill R.M. // Philos. Mag. Part B. 1980. 41, N 6. P. 625 642.
- 29. Dissado L.A., Hill R.M. // J. Chem. Soc. Faraday Trans. II. 1982. 78, N 1. P. 81 93.
- 30. Hill R.M., Dissado L.A. // J. Phys. C. 1982. 15, N 25. P. 5171 5193.
- 31. Dissado L.A., Hill R.M. // Proc. R. Soc. Lond. A. 1983. 390. P. 131 180.
- 32. Hill R.M. // Phys. Stat. Solidi B. 1981. 103, N 1. P. 319 328.
- 33. *Кузнецов В.Н., Лесневская Л.В., Петрова В.А. и др.* // Высокомолек. соед., сер. А. 1969. **11А**, № 1. С. 213 219.

- 34. Дымент О.Н., Казанский К.С., Мирошников А.М. Гликоли и другие производные окисей этилена и пропилена. М.: Химия, 1976.
- 35. Шахпаронов М.И. Механизмы быстрых процессов в жидкостях. М.: Высшая школа, 1980.
- 36. Tamarit J.L., Perez-Jubindo M.A., Fuente M.R. // J. Phys.: Condens. Mat. 1997. 9. P. 5469 5477.
- Форсайт Дж., Малькольм М., Моулер К. Машинные методы математических вычислений. М.: Мир, 1980. Forsythe G.E., Malcolm M.A., Moler C.B. Computer methods for mathematical computations. – N. J.: Pretice-Hall, INC. Englewood Cliffs, 07632, 1977.
- 38. Левин В.В. Физика и физико-химия жидкостей. М.: Изд-во МГУ, 1972. Вып. 1. С. 176 190.
- Alvarez F., Alegria A., Colmenero J.R. // Phys. Rev. B. 1991. 44, N 14. P. 7306 7312; Ibid. 1993. 47, N 3. P. 125 130.
- 40. Utzel H., Wessling E., Dachwitz E., Stockhausen M. // Colloid. Polymer Sci. 1990. **268**, N 4. P. 330 336.
- 41. Schrödle S., Buchner R., Kunz W. // J. Phys. Chem. B. 2004. 108, N 20. P. 6281 6287.
- 42. Атовмян Е.Г., Батурин С.М., Федотова Т.Н. // Высокомолек. соед. 1989. **31A**, № 8. С. 1685 1690.
- 43. Зайчиков А.М., Крестьянинов М.А. // Журн. общей химии. 2007. 77, вып. 7. С. 1134 1143.
- 44. Kojima S., Saruta K., Yoshihara A. // Jpn. J. Appl. Phys. Part 1. 1997. 36, N 5B. P. 2981 2984.
- 45. *Справочник* по дипольным моментам / Ред. О.А. Осипов, В.И. Минкин, А.Д. Гарновский. М.: Высшая школа, 1971.
- 46. Loveluck G.D. // J. Chem. Soc. 1961. N 11. P. 4729 4732.
- 47. *Фрелих Г*. Теория диэлектриков. М.: ИЛ, 1960. Fröhlich H. Theory of dielectrics. Oxford: Clarendon press, 1958.
- 48. Marchal J., Benoit H. // J. Polymer Sci. 1957. 23, N 103. P. 223 232.
- 49. Левин В.В., Подловченко Т.Л. // Физика и физико-химия жидкостей. М.: Изд-во МГУ, 1973. Вып. 2. С. 27 45.
- 50. Kotera A., Suzuki K., Matsumura K. et al. // Bull. Chem. Soc. Jpn. 1962. 35, N 5. P. 797 801.