2010. Tom 51. № 1

Январь – февраль

C. 148 - 154

УДК 548.737:541.632

ЭНЕРГИЯ ВЗАИМОДЕЙСТВИЯ МОЛЕКУЛЯРНЫХ ПАР. І. АНАЛИЗ СУПРАМОЛЕКУЛЯРНОЙ АРХИТЕКТУРЫ КРИСТАЛЛОВ ПОЛИФТОРИРОВАННЫХ ЕНАМИНОИМИНОВ И ЕНАМИНОКЕТОНОВ РЯДА ИНДАНА

© 2010 Т.В. Рыбалова*, Ю.В. Гатилов

Учреждение Российской академии наук Новосибирский институт органической химии им. Н.Н. Ворожиова CO PAH

Статья поступила 8 июля 2009 г.

Рассчитанные методом DFT (PBE/3z) по экспериментальным кристаллическим координатам атомов энергии взаимодействия молекулярных пар (МП) используются для анализа упаковки кристаллов соединений 1—6. Дополняя визуально-геометрический подход программ PLATON и MERCURY, энергии взаимодействия МП позволяют более полно и структурированно описывать архитектуру кристалла, более надежно выделять супрамолекулярные мотивы и устанавливать их иерархию.

Ключевые слова: упаковка кристалла, квантово-химические расчеты, водородные связи N—H…O и N—H…N, межмолекулярные взаимодействия $\pi...\pi$, F… π , O… π , N… π , F…H и F…F, полифторароматические соединения.

Основным инструментом, используемым при описании кристаллической структуры, являются такие программы как PLATON и MERCURY, основанные на геометрических критериях, например, ван-дер-ваальсовых радиусах взаимодействующих атомов. Однако в случае сложных органических соединений с различными функциональными группами, участвующими в межмолекулярных взаимодействиях, такой подход недостаточен для установления иерархии супрамолекулярных мотивов в рамках одного кристалла. В работе [1] нами был изложен подход, основанный на расчете энергии взаимодействия всех типов молекулярных пар (МП) ближайших соседей в кристалле. Переходя к терминологии супрамолекулярной химии [2], где молекулы аналогичны атомам в препаративной химии, а межмолекулярные взаимодействия — супрамолекулярным связям, энергию взаимодействия МП в рамках такой терминалогии можно назвать энергией супрамолекулярной связи.

Применение энергетических критериев к анализу упаковки кристалла будет продемонстрировано на примере соединений 1-6, результаты рентгеноструктурного исследования которых были опубликованы в работах [3, 4].

_

^{*} E-mail: rybalova@nioch.nsc.ru

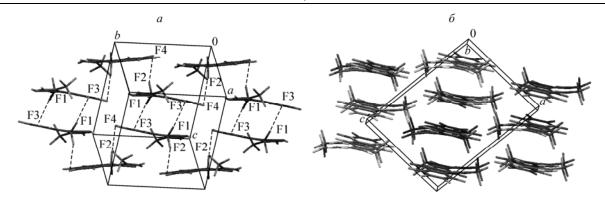
Рис. 1. Нумерация атомов (соединение **2**, содержащее метильную группу). В соединениях **1**, **3—6** нумерация аналогична

МЕТОДИЧЕСКАЯ ЧАСТЬ

Расчеты проведены по программе PRIRODA [5] (методом DFT, функционал PBE в базисном наборе 3z) по экспериментальным кристаллическим координатам атомов, кроме атомов водорода. В связи с особенностями определения положения атомов водорода методом PCA, их координаты были скорректированы путем нормализации длины связи с тяжелым атомом [6] до значений, полученных в газофазных расчетах.

Каждой молекулярной паре соотнесены соответствующие укороченные межмолекулярные контакты, параметры которых приведены в таблицах. Необходимо отметить, что, кроме классических водородных связей N—H…N и N—H…O, нами рассматривались слабые водородные связи, такие как N—H…F и C—H…F, для которых расстояния H…F допускаются несколько выше суммы ван-дер-ваальсовых радиусов, равной 2,56 Å [7], а углы D—H…F могут быть в интервале 90—150°, так как они обусловлены преимущественно взаимодействиями электростатической природы [8]. Для описания взаимодействий С—F… π , часто встречающихся в кристаллах этих соединений, в литературе существуют разные системы геометрических параметров [9, 10]; мы использовали предложенную в работе Прасаны и сотрудников [10].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ


Выделенная по геометрическим критериям при анализе кристаллической структуры соединения 1 [3] димерная пара с укороченным межмолекулярным контактом F1...F3 имеет самую большую энергию взаимодействия (МП 1, табл. 1) среди всех пар. Несмотря на то что контакт F2...F4 не является укороченным [7] и поэтому не рассматривался в работе [3], энергия взаимодействия МП 2 (рис. 1) достаточно велика, и это является также аргументом для использования энергетических критериев. Два вышеописанных взаимодействия определяют молекулярный слой, параллельный плоскости (a+c)b (рис. 2, a), другие взаимодействия в слое более слабые (МП 3, табл. 1). Межслоевые взаимодействия в кристалле соединения 1 соответствуют МП 4 и 5 с более низкой, чем для МП 1 и 2, энергией взаимодействия, однако, поскольку энер-

 $\ \, T \ a \ б \ л \ и \ ц \ a \ \ 1 \\ \ \,$ Энергия взаимодействия молекулярных пар в кристаллах соединения ${f 1}^a$

МΠ	- Е	Контакт	Геометрические параметры		ы
Внутрислоевые					
1	2,6	F1F3		2,837(4)	
2	2,1	F2F4		2,939(4)	
3	1,1	N2—HF4 ⁶	0,80(5)/1,05	2,73(7)/2,605	119(6)
		N1—HF5	0,84(6)/1,05	2,80(6)/2,493	111(6)
Межслоевые					
4	1,9	N1—HF7	0,84(6)/1,05	2,83(6)/2,602	144(6)
5	1,5	N2—HF9	0,80(5)/1,05	2,75(6)/2,560	119(5)

^а Здесь и далее расстояния в Å, углы в градусах, энергия в ккал/моль.

 $^{^6}$ Во всех таблицах для водородных связей приводятся расстояния D—H и H...A по данным PCA/нормализованные для квантово-химических расчетов, и углы D—H...A, где D — донор, A — акцептор водорода.

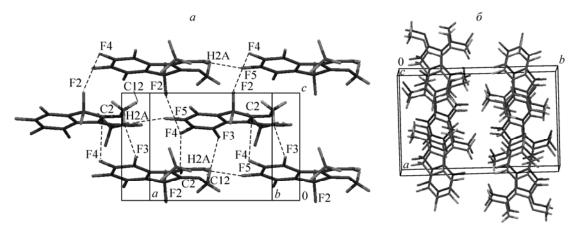

 $Puc.\ 2.$ Молекулярный слой в кристалле соединения 1 (a), слои молекул в кристалле соединения 1 (b), вид вдоль оси b

Таблица 2 Энергия взаимодействия молекулярных пар в кристаллах соединения **2**

МΠ	- Е	Контакт	Геометрические параметры				
	Внутрислоевые						
1	1,7	F2F4	_	2,864(3)			
2	1,4	N2—HF4	0,92(4)/1,05	2,78(4)/2,633	126(4)		
		N2—HF5	0,88(4)/1,05	2,48(4)/2,338	133(4)		
3	1,4	C12—HF3 C2F4	0,96/1,095	2,61/2,530	126		
		C2F4		3,100(4)	_		
Межслоевые							
4	1,1	F4F7	_	2,992			
5	0,8	F1F6	_	3,078			
6	0,7	C12—HF9	0,96/1,095	2,76/2,670	129		

гии пар 2 и 4 различаются незначительно, упаковку димерных пар можно рассматривать скорее как 3D-архитектуру, образованную трехмерной сеткой взаимодействий.

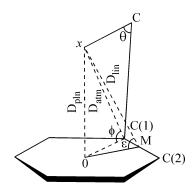

Из анализа данных табл. 2 следует, что замена водорода при атоме N1 на метильную группу приводит к частичному изменению набора внутрислоевых взаимодействий в кристалле соединения 2 (см. табл. 2, МП 1—3) по сравнению с соединением 1 и снижению в целом энергии взаимодействия МП. Расположение молекул в слое несколько иное, и слои более четко разграничены (рис. 3), но в целом архитектура кристаллов близка. Отметим, что описанные в работе

Рис. 3. Молекулярный слой, параллельный плоскости ac (a) и упаковка слоев в кристалле соединения 2 — проекция вдоль c (δ)

Таблица 3 Энергия взаимодействия молекулярных пар в кристаллах соединения **3**

МΠ	-Е	Контакт	Геометрические параметры			
В цепочке						
1	5,1	N1—H…N2	0,81(3)/1,02	2,38(3)/2,158	149(4)	
		N1—HF9	0,81(3)/1,02	2,52(5)/2,515	125(4)	
		F8F9	_	2,937(4)		
2	1,5	N1—H…F4	0,85(4)/1,02	2,64(4)/2,532	159(4)	
		F2F4		2,781(3)	_	
Межцепочечные						
3	2,1	C1—F1 π (C4÷C9) ^a	2,916	86	15	
		C12—HF1	0,90(4)/1,095	2,68(3)/2,598	138(4)	
4	1,1	C12—HF6	1,09(4)/1,095	2,54(4)/2,603	146(4)	
5	1,8	F5F7		3,123(3)	_	
6	0,7	F2F2		2,944(3)	_	

^а Для $X...\pi$ -взаимодействий приводится расстояние $D_{\rm pln}$ или $D_{\rm atm}$, и углы ω (либо ϕ , табл. 5, МП $\bf 6$) и θ [10], удовлетворяющие одному из следующих условий (I—III) в зависимости от положения проекции атома X на плоскость цикла:

I — 90° <
$$\omega$$
 < 90°, θ < 60°, $D_{\rm pln}$ < $D_{\rm max}$; II —130° < ω < 130°, θ < 60°, $D_{\rm pln}$ < $D_{\rm atm}$ < $D_{\rm max}$; III — 50° < ϕ < 90°, θ < 60°, $D_{\rm atm}$ < $D_{\rm max}$; $D_{\rm max}$ = ($R_{\rm VDW}^{\rm C}$ + $R_{\rm VDW}^{\rm X}$) × 1,05 [10, 11].

[3] цепочки, образованные за счет межмолекулярных контактов N2—H...F5, соответствуют МП 2, энергия взаимодействия которой не является максимальной.

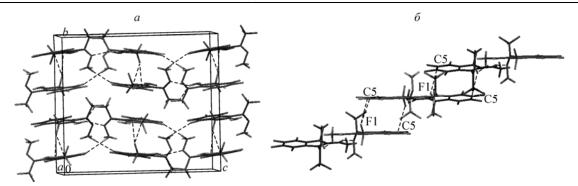
Таким образом, выделение димерных пар в кристаллах соединения 1 и цепочек в кристаллах соединения 2, основанное на геометрическом подходе, не достаточно точно и полно описы-

Таблица 4 Энергия взаимодействия молекулярных пар в кристаллах соединения **4**

МΠ	-Е	Контакт	Геометрические параметры				
	В цепочке						
1	8,6	N1—H…N2	0,85(3)/1,02	2,20(2)/2,024	164(2)		
		C12—HF1	1,01(4)/1,095	2,53(4)/2,500	141(3)		
		N1—H…F7	0,85(3)/1,02	2,72(3)/2,630	125(3)		
		C13—HF1	0,93(4)/1,095	2,76(4)/2,568	127(3)		
В слое							
2	1,4	C1—F1π(C4÷C9)	2,972(4)	105	36		
Межслоевые							
3	1,0	C13—HF5	0,88(5)/1,095	2,58(5)/2,355	144(3)		

Таблица 5 Энергия взаимодействия молекулярных пар в кристаллах соединения **5**

МΠ	<i>–Е</i>	Контакт Геометрические параметри		ы			
В цепочке							
1	5,8	N1—HO1A	0,83(5)/1,02	2,13(4)/1,928	158(4)		
		N1—HF1A	0,87(3)/1,02	2,75(4)/2,621	111(4)		
2	4,0	N1A—HO1	0,85(3)/1,02	2,13(3)/2,026	151(3)		
		N1A—HF1	0,83(4)/1,02	2,55(3)/2,391	123(4)		
3	1,3	F6F8		2,849(2)	_		
Внутрислоевые							
4	3,1	C4A—F3A…π(C4÷C9)	3,115(3)	113	40		
		C11A—F7A…π(C4÷C9)	3,075	73	35		
5	1,5	C11A—F8A…π(C4÷C9)	3,202	71	44		
6	1,1	C7A—F6A…π(C4÷C9)	3,162(3)	81	48		
Межслоевые							
7	1,0	C6—F5π(C4A÷C9A)	2,992(3)	119	33		
8	1,1	C5A—F4Aπ(C4A÷C9A)	3,141(3)	68	51		


вает кристаллическую структуру этих соединений и не позволяет детально проанализировать схожесть и различия в архитектуре кристаллов этих соединений.

В кристаллах соединений **3**—**6** молекулярные пары с наибольшей энергией взаимодействия (для соединений **3** и **4** МП **1** в табл. 3, 4 и для соединений **5** и **6** МП **1** и **2** в табл. 5, 6) соответствуют цепочкам, образованным посредством межмолекулярных водородных связей, что ожидаемо и согласуется с выводами работ [3, 4]. Однако способы укладки цепочек и межцепочечные взаимодействия в кристаллах этих соединений различны.

В кристалле соединения **3** визуально (рис. 4, a) видны параллельные слои цепочек, попарно связанные С—Н...F- и С—F... π -взаимодействиями (см. табл. 3, МП **3**, **4**). Причем между молекулами соседних цепочек в этих слоях нет укороченных контактов, энергия взаимодействия

Таблица 6 Энергия взаимодействия молекулярных пар в кристаллах соединения **6**

- Е	Контакт	Геометрические параметры					
В цепочке							
7,9	N1—HO1A	1,06(6)/1,05	1,89(6)/1,920	166(5)			
	N1A—HF2	0,94(6)/1,05	2,45(6)/2,243	129(4)			
8,1	N1A—HO1	0,67(6)/1,05	2,25(5)/1,879	172(6)			
	N1—HF2A	0,84(6)/1,05	2,54(5)/2,243	139(4)			
0,4	F2F7		2,856(4)				
0,4	F2AF7A	_	2,833(4)				
Между цепочками							
1,9	F1AC10A		2,986(5)				
1,3	F6AF2		2,872(5)	_			
В паркете							
1,4	C11A—F9A…π(C4÷C9)	3,009	81	32			
0,9	C5—F4π(C4A÷C9A)	3,130(5)	101	22			
	7,9 8,1 0,4 0,4 1,9 1,3	В цег 7,9 N1—HО1А N1А—НF2 8,1 N1А—НО1 N1—HF2A 0,4 F2F7 0,4 F2AF7A Между ц 1,9 F1AC10A 1,3 F6AF2 В па 1,4 С11А—F9Аπ(C4÷С9)	В цепочке 7,9 N1—НО1А 1,06(6)/1,05 N1А—НF2 0,94(6)/1,05 N1—НF2A 0,67(6)/1,05 N1—НF2A 0,84(6)/1,05 0,4 F2F7 — 0,4 F2AF7A — Между цепочками 1,9 F1AC10A — 1,3 F6AF2 — В паркете 1,4 С11А—F9Аπ(C4÷С9) 3,009	В цепочке 7,9 N1—НО1А			



Рис. 4. Слои цепочек, параллельные плоскости ac (a) в кристалле соединения 3 (вид вдоль оси a) и стопки цепочек (δ) в кристалле соединения 4

молекулярных пар минимальна и равна 0,3 ккал/моль. Однако МП 5 и 6 из соседних слоев, не образующих укороченных контактов, имеют достаточно большую энергию взаимодействия (особенно МП 5), и в данном случае мы наблюдаем скорее каркасную 3D, чем слоистую 2D архитектуру. Отметим, что данное заключение нельзя сделать ни на основе визуальной картины (см. рис. 3, *a*), ни на основе укороченных межмолекулярных контактов. В работе [3] при анализе упаковки кристаллов соединения 3 и 4 описывались лишь молекулярные цепочки, образованные наиболее сильными межмолекулярными взаимодействиями в данных кристаллах — водородными связями N—Н…N.

В кристалле соединения 4 цепочки уложены в слои со сдвигом (см. рис. 4, δ), образованные С—F... π -взаимодействием (МП 2). Между слоями наблюдаются С—H...F-взаимодействия (МП 3). В данном случае выделение слоев обосновано более высокой энергией взаимодействия в МП 2 (см. табл. 4). Выделенные в работе [4] в кристаллах соединения 5 слои цепочек, параллельные плоскости ac, соответствуют МП 7 и 8 (см. табл. 5). Однако наши расчеты показали, что С—F... π -взаимодействия в МП 4 в сумме более выгодны и цепочки образуют слои, параллельные плоскости (a+c)b (см. рис. 5, a). Взаимодействия в МП 5 и 6 дополнительно стабилизируют слой, взаимодействия же С—F... π в МП 7 и 8 являются межслоевыми.

Таким образом, основываясь на оценке энергетической выгодности С— $F...\pi$ -взаимодействий, было уточнено описание упаковки водородно-связанных цепочек в кристалле енаминокетона **5**.

Описание кристаллической структуры соединения **6** в работе [4] полностью соответствует рассчитанным значениям энергий взаимодействия МП (см. табл. 6), причем, примечателен тот факт, что объединенным попарно параллельным цепочкам (см. рис. 5, δ) соответствуют МП **5** и **6** с более высокой энергией взаимодействия, чем для МП **7** и **8**, соответствующих взаимодействиям этих пар цепочек в паркете (см. рис. 5, δ).

Таким образом, геометрические критерии часто недостаточны для ранжирования межмолекулярных взаимодействий по силе и анализа их влияния на кристаллическую упаковку. Полученные нами в дополнение к ним энергии взаимодействия молекулярных пар в кристалле позволяют более детально и структурированно описывать его архитектуру, более надежно выделять супрамолекулярные мотивы и устанавливать их иерархию.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 09-03-00361).

СПИСОК ЛИТЕРАТУРЫ

- 1. Рыбалова Т.В., Багрянская И.Ю. // Журн. структур. химии. 2009. 50, № 4. С. 774 786.
- 2. Desiraju G. R. // Chem. Commun. 1997. P. 1475 1482.
- 3. Карпов В.М., Платонов В.Е., Рыбалова Т.В., Гатилов Ю.В. // Журн. структур. химии. 2006. 47, № 3. С. 532 539.
- 4. Рыбалова Т.В., Карпов В.М., Гатилов Ю.В, Шакиров М.М. // Там же. 2008. **49**, № 3. С. 520 527
- 5. Laikov D.N. // Chem. Phys. Lett. 1997. 281. P. 151 156.
- 6. Steiner Th. // Angew. Chem. Int. Ed. 2002. 41. P. 48 76.
- 7. Rowland R.S., Taylor R. // J. Phys. Chem. 1996. **100**. P. 7384 7391.
- 8. Стид Дж. В., Этвуд Дж. Л. Супрамолекулярная химия. 1. М.: ИКЦ "Академкнига", 2007. С. 52.
- 9. Bagryanskaya I.Yu., Gatilov Yu.V., Maksimov A.M. et al. // J. Fluorine Chem. 2005. 126. P. 1281 1287.
- 10. Prasana M.D., Guru Row T.N. // Cryst. Eng. 2000. 3. P. 135 154.
- 11. Suezawa H., Yoshida T., Hirota M. et al. // J. Chem. Soc., Perkin Trans. 2. 2001. P. 2053 2054.