2012. Том 53, № 5

Сентябрь – октябрь

C. 941 – 945

UDC 548.73:541.49:546.74

SPECTROSCOPIC CHARACTERIZATION AND CRYSTAL STRUCTURE OF *cis*-bis(*N*-(2-BENZOYL)-*N'*,*N'*-DIPHENYLTHIOUREATO-*k*²O,S)NICKEL(II)

H. Pérez¹, R.S. Corrêa², B. O'Reilly³, A.M. Plutín³, C.C.P. Silva⁴, Y.P. Mascarenhas⁴

¹Departamento de Química Inorgánica, Facultad de Química, Universidad de la Habana, Habana, Cuba, e-mail: hperez@fq.uh.cu

²Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brasil

³Laboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, Habana, Cuba

⁴*Grupo de Cristalografia, Instituto de Física de São Carlos, Universidade de São Paulo, SP, Brasil*

Received November, 5, 2011

The title compound $[Ni(C_{20}H_{15}N_2OS)_2]$ is prepared by the reaction of metal acetate with the corresponding acylthiourea derivative. The complex is characterized by elemental analysis, IR, ¹H and ¹³C NMR, and its structure is determined by single crystal X-ray diffraction. The Ni(II) ion is coordinated by the S and O atoms of two *N*-benzoyl-*N'*,*N'*-diphenylthiourea ligands in a slightly distorted square-planar coordination geometry. The two O and two S atoms are mutually *cis* to each other. The substance crystallizes triclinic (*P*-1 space group) with cell dimensions a = 10.7262(9), b = 12.938(3), c = 14.2085(12) Å, $\alpha = 74.650(4)$, $\beta = 78.398(4)$, $\gamma = 68.200(5)^\circ$, and two formula units in the unit cell. The structure is very close to the related *N*-(2-furoyl) Ni complex reported previously.

Keywords: nickel(II) complex, acylthiourea derivatives, spectroscopic analysis, crystal structure, molecular assembly, Hirshfeld surface.

INTRODUCTION

In recent years, thiourea derivatives have been a subject of investigations because of their applications in analytical and biological sciences, as well as due to their ability to form stable metal complexes [1]. A class of substituted thioureas widely studied is known as *N*-acyl-*N'*,*N'*-dialkylthiourea, synthesized for the first time by Neucki in 1873 [2]. In the field of coordination chemistry, *N*-acyl-*N'*,*N'*-dialkylthioureas coordinated with transition metals were first explored by Beyer and co-workers [3] and later by König *et al.* [4]. Many *N*-acyl-*N'*,*N'*-disubstituted thiourea complexes involving metals such as nickel, copper, cobalt, cadmium, palladium, platinum, and ruthenium have been studied, [5—10]. Thioureas coordinate to a metal via both sulfur and oxygen providing a multitude of bonding possibilities [1, 11]. Over recent years, many transition metal complexes with *N*-benzoyl-*N'*,*N'*-disubstituted thioureas have been reported [12—15] because this kind of ligands display a remarkably rich coordination chemistry. Usually the ligand is coordinated to the metal center forming a very stable bidentate complexe (*cis* conformation preferred) with a six-membered ring chelate structure, the complex stoichiometry generally being 1:2 or 1:3 (M:L, with M = metal ion and L = ligand), according to the oxidation state of the metal ion.

The biological activities of complexes with thiourea derivatives have been successfully screened for various biological actions. Metal complexes of these ligands containing oxygen and sulfur as donor atoms are known to possess useful activities as anti-tumor, anti-fungal, anti-bacterial, insecticidal, herbicidal, pesticidal reagents and plant-growth regulators [16, 17].

[©] Pérez H., Corrêa R.S., O'Reilly B., Plutín A.M., Silva C.C.P., Mascarenhas Y.P., 2012

We have recently begun to examine the coordination behavior of a series of substituted acylthiourea derivatives [5-7, 13-15]. In this paper, we study the binding of *N*-benzoyl-*N'*,*N'*-diphenylthiourea to the Ni(II) ion. The complex was characterized by the elemental analysis, IR, ¹H and ¹³C-NMR spectra, and X-ray structural analysis.

EXPERIMENTAL

All reagents and solvents used were purchased from commercial sources of analytical grade. Elemental analysis (C, H, N, and S) were performed on a Perkin-Elmer 2400 CHN instrument. The infrared spectrum was recorded on a Nicolet NEXUS 670 IR spectrophotometer using KBr discs. ¹H and ¹³C NMR spectra were recorded on an Advance 300 Bruker spectrometer with CDCl₃ as the solvent at frequencies of 250 MHz and 62.9 MHz respectively, using TMS as the standard. The assignment of the signals in the ¹³C NMR spectra was supported by the DEPT-135° spectrum.

Synthesis of the complex. *N*-benzoyl-*N'*,*N'*-diphenylthiourea ligand was synthesized by converting benzoyl chloride into benzoyl isothiocyanate and then condensing with an appropriate amine [18]. To an ethanol solution (30 ml) containing the ligand (0.66 g, 2 mmol) was added an ethanol solution of Ni(CH₃ ~ COO)₂ ~ 4H₂O (0.25 g, 1 mmol). The solution was stirred at room temperature for 2 h, and at once a solution of NaOH (1 N) was added to adjust pH to the neutral value. The mixture was filtered and the filtrate was evaporated under reduced pressure to give a red solid that was washed with acetone. Suitable X-ray quality crystals were obtained by slow evaporation of a chloroform/hexane solution (1:1, v/v) of the complex.

cis-bis(*N*-(2-benzoyl)-*N'*,*N'*-diphenylthioureato- k^2 O,S)nickel(II). Brown. Yield, 74.0 %. TF (°C), 276—277. Anal. Calcd. for C₄₀H₃₀N₄NiO₂S₂ (%): C, 66.59; H, 4.19; N, 7.76; S, 8.89. Found: C, 66.46; H, 4.15; N, 7.81; S, 8.95. IR (KBr): v = 3060 (CH), 3028 (CH), 1587 (C=C), 1513, 1417 (CN), 1254 (CS) cm⁻¹. ¹H NMR (CDCl₃), ppm: δ = 7.22—7,25 (m, 4H, Ph); 7.28 (d, *J* = 7.93 Hz, 1H, Ph); 7.33 (d, *J* = 7.32 Hz, 1H); 7,35—7,43 (m, 2H, Ph); 7.76 (d, *J* = 6.66 Hz, 2H, Ph); ¹³C NMR (CDCl₃), ppm: 127.10, 128.56, 129.12, 129.49, 131.18, 131.63, 136.37, 136.45, 142.96 (C—Ph); 173.71 (CO); 175.48 (CS).

X-ray crystallography. X-ray diffraction data collection of the complex was performed on an Enraf-Nonius Kappa—CCD diffractometer (95 mm CCD camera on a φ -goniostat) using graphite-monochromated Mo K_{α} radiation (0.71073 Å). The final unit cell parameters were based on all reflections. Data collections were carried out using the COLLECT program [19]; integration and scaling of the reflections were performed with the HKL Denzo—Scalepack system of programs [20]. Gaussian absorption correction was applied [21]. The structure was solved by direct methods with SHELXS-97 [22]. The model was refined by full-matrix least squares on F^2 with SHELXL-97 [22]. All hydrogen atoms were stereochemically positioned and refined with the riding model. The aromatic hydrogen atoms were set isotropic with a thermal parameter 20 % greater than the equivalent isotropic displacement parameter of the atom to which each one was bonded. The WinGX [23] program was used to prepare the material for publication. Structural analysis and figures were made using the ORTEP-3 [24] and MERCURY [25] softwares. The Cambridge Structural Database was used to compare the structure of the complex with the others [26]. Further details concerning data collection and refinement are given in Table 1.

RESULTS AND DISCUSSION

IR and NMR spectra. Regarding the IR spectra, the complex displays strong bands in the region of 1590—1250 cm⁻¹, which are characteristic of *N*-benzoyl-*N'*,*N'*-diphenylthioureas and *N*-furoyl-N',N'-diphenylthioureas [27]. No absorption was detected, however, in the range between 1700 cm⁻¹ and 1650 cm⁻¹, where the uncoordinated ligand is supposed to exhibit C=O stretching vibrations [18]. This absorption shifts to lower frequencies is a clear proof of complex formation with a large degree of electron delocalization within the chelate rings. *N*-benzoyl-*N'*,*N'*-diphenylthiourea show the N—H stretching band near 3200 cm⁻¹, which is not present in the corresponding metal complex, in agreement with the presence of a deprotonated ligand in this chelate. The bands that center near 1500 cm⁻¹,

Table 1

Empirical formula	$[NiC_{40}H_{30}N_4O_2S_2]$
Formula weight	721.51
Crystal system	Triclinic
Space group	<i>P</i> -1
Unit cell dimensions	10.7262(9), 12.938(3), 14.2085(12);
$a, b, c, \text{\AA}; \alpha, \beta, \gamma, \text{deg.}$	74.650(4), 78.398(4), 68.200(5)
Volume, Å ³	1753.8(5)
Ζ	2
Density calculated, Mg/m ³	1.366
μ , mm ⁻¹	0.713
<i>F</i> (000)	748
Crystal size, mm ³	0.072×0.042×0.031
θ range deg.	3.11-25.00
Index ranges	$-11 \le h \le 11, -14 \le k \le 14, -15 \le l \le 15$
Reflections collected	9392
Independent reflections	5011 [R(int) = 0.0838]
Completeness to θ_{max} , %	99.4
Max. and min. transmission	0.978 and 0.926
Data / restraints / parameters	6179 / 0 / 442
Goodness-of-fit on F^2	0.976
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0505, wR2 = 0.0910
R indices (all data)	$R1 = 0.1102, \ wR2 = 0.1065$
$\Delta \rho_{\text{max}}$ and $\Delta \rho_{\text{min}}$, $\mathbf{e} \cdot \mathring{A}^{-3}$	0.251 and -0.385

Crystal data and structure refinement parameters obtained for the complex

 1400 cm^{-1} , and 1250 cm^{-1} can be attributed to absorptions of the CN and CS groups engaged in partial double bonds and confirm the complex formation, while those bands are absent in the IR spectra of the free ligand.

Additional support for the above assignments is obtained from the ¹H NMR spectra of this complex. The experimental NMR data of the complex correspond to those of similar compounds [28]. The absence of the singlet corresponding to the proton of NH acylthioureide groups around 8.70 ppm [18] corroborates the coordination of the ligand to metal through these groups. As far as ¹³C NMR spectra is concerned, the signals in 182.76 ppm (C=S) and 162.63 ppm (C=O), typical of the free ligand, are absent. Two new peaks, assigned to quaternary carbon atoms, were found about 175.5 ppm (CS) and 173.7 ppm (CO) instead, which is in accordance with the proposed structure for the complex. The effects of circulating π electrons of the chelate rings could account for the opposite displacements that have been found with respect to the free ligand, especially in the carbon atoms corresponding to the thiocarbonyl and carbonyl groups, with shifts to lower and higher frequencies respectively.

Single crystal X-ray analysis. The molecular structure of the complex showing the atom numbering scheme is given in Fig. 1. Selected bond lengths and angles are listed in Table 2. In the structure, two *N*-benzoyl-N', N'-diphenylthiourea molecules are bonded to the central Ni(II) ion in *cis* positions. The coordination geometry is a slightly distorted square-plane as reflected by O1—Ni1—S2 and O2—Ni1—S1 bond angles (Table 2). The dihedral angle between S1—Ni1—O1 and S2—Ni1—O2 planes is 5.1(2)°.

The Ni—S (1.862(3) Å and 1.865(3) Å) bond distances are equal within experimental error [26]. The Ni—S and Ni—O bond lengths lie within the range of those found in the related structures [5, 14]. The distance of the nickel atom from the best plane through the coordination sphere is -0.013(1) Å. The chelate ring systems Ni1—O1—C1—N1—C2—S1 and Ni1—O2—C21—N3—

Fig. 1. Molecular structure of the title compound with selected atoms labeled. Displacement ellipsoids are drawn at the 30 % probability level

C22—S2 are nearly planar with the largest deviations from the best plane being 0.047(2) Å for O1 and -0.037(3) Å for O2 respectively. The dihedral angle between these chelate planes is $6.66(13)^{\circ}$. The molecular structure is very close to the related *N*-(2-furoyl) Ni complex reported previously [5], and shows a dihedral angle of $28.1(2)^{\circ}$ between the phenyl planes of the benzoyl groups, in comparison with the corresponding angle of $24.2(2)^{\circ}$ between the furanic planes of the furoyl Ni complex.

The lengths of C—O, C—S, and C—N bonds in the chelate ring are between characteristic single and double bond lengths [26], which are shorter than single and longer than double bonds. These results can be explained by the existence of delocalization in the chelate ring, which is also supported by IR and NMR data. Fig. 2 shows the packing arrangement of the complex with two molecules in the unit cell. The crystal assembly of this complex is formed by sheets along the [111] direction (Fig. 3). To stabilize the structure there are weak non-classical C…H—C intermolecular interactions, such as van der Waals forces and π — π stacking. It is known that the non-classical interactions can provide good structural motifs for the construction of extended architectures and stabilize the crystal structures of Ni(II) complexes [29].

These weak intermolecular interactions of the complex were analyzed using the Hirshfeld surfaces and the corresponding 2D fingerprint plots [30]. The d_{norm} (normalized contact distance) surface

Selected bond lengths and angles (Å, deg.) for the complex

Table 2

Ni1—01	1.862(3)	C1—01	1.255(4)	C2—N1	1.330(4)		
Ni1—02	1.865(3)	C1—N1	1.332(4)	C2—N2	1.362(4)		
Ni1—S1 Ni1—S2	2.1445(11) 2.1530(11)	C1—C3	1.478(5)	C2—S1	1.720(4)		
01—Ni1—O2	83.36(11)	O2—Ni1—S1	176.66(9)	O2—Ni1—S2	95.68(9)		
01—Ni1—S1	95.57(8)	O1—Ni1—S2	175.57(9)	S1— Ni1—S2	85.62(4)		

Fig. 2. View of the unit cell of the title complex

Fig. 3.	Crystal	packing	represen	ntation	with the	mole
cul	es formi	ng sheets	along t	he [111] directio	on

and the breakdown of the fingerprint plots (new techniques and tools incorporated in the CrystalExplorer computer program [31]) were used for decoding and quantifying the intermolecular interactions in the crystal lattice. From this analysis, it immediately emerges that the title compound noticeably contributes to C...H—C interactions (35.9 % Hirshfeld surface area), more than other contacts, as obtained from the crystal structure of the complex.

Acknowledgments. The authors thank the Grupo de Cristalografia, IFSC, USP, Brasil for allowing the X-ray data collection and Professor J. Ellena for helpful discussion. The authors acknowledge the financial support from the Ph.D. Cooperative Program — ICTP/CLAF and the Brazilian agencies: FAPESP, CNPq and Capes. RSC acknowledges FAPESP (2009/08131-1) for a PhD fellowship.

Supplementary Material. Crystallographic data for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC No 816028. Copies of this information may be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) +44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk].

REFERENCES

- 1. Koch K.R. // Coord. Chem. Rev. 2001. 216-217. P. 473.
- 2. Neucki E. // Ber. 1873. 6. P. 598.
- 3. Beyer L., Hoyer E., Hartman H., Liebscher J. // Z. Chem. 1981. 21. S. 81 91.
- 4. König K.H., Schuster M., Steinbrech B. et al. // Z. Anal. Chem. 1985. 321. S. 457 460.
- 5. Pérez H., Corrêa R.S., Plutín A.M. et al. // Acta Crystallogr. 2009. E65. P. m242.
- 6. Pérez H., Corrêa R.S., Plutín A.M. et al. // Acta Crystallogr. 2008. E64. P. m733 m734.
- 7. Duque J., Estévez-Hernández O., Reguera E. et al. // J. Coord. Chem. 2009. 62, N 17. P. 2804 2813.
- 8. Yuan Y.F., Wang J.T., Gimeno M.C. et al. // Inorg. Chim. Acta. 2001. 324. P. 309.
- 9. Zhang Y.M., Wei T.B., Xian L., Gao L.M. // Phosphorus, Sulfur Silicon Relat. Elem. 2004. 179. P. 2007.
- 10. Zhou W.Q., Li B.L., Zhu L.M. et al. // J. Mol. Struct. 2004. 690. P. 145.
- 11. Henderson W., Nicholson B.K., Dinger M.B., Bennett R.L. // Inorg. Chim. Acta. 2002. 338. P. 210.
- 12. Binzet G., Külcü N., Flörke U., Arslan H. // J. Coord. Chem. 2009. 62, N 21. P. 3454 3462.
- 13. Pérez H., da Silva C.C.P., Plutín A.M. et al. // Acta Crystallogr. 2011. E67. P. m504.
- 14. Pérez H., Mascarenhas Y., Plutín A.M. et al. // Acta Crystallogr. 2008. E64. P. m503.
- 15. Pérez H., Corrêa R.S., Duque J. et al. // Acta Crystallogr. 2008. E64. P. m916.
- 16. Fernandes E.R., Manzano J.L., Benito J.J. et al. // J. Inorg. Biochem. 2005. 99. P. 1448 1572.
- 17. Hernández W., Spodine E., Vega A. et al. // Z. Anorg. Allg. Chem. 2004. 630. S. 1381 1386.
- 18. Hernández W., Spodine E., Muñoz J.C. et al. // Bioinorg. Chem. Appl. 2003. 1. P. 271 284.
- 19. Enraf-Nonius COLLECT Nonius BV, Delft, The Netherlands, 1997-2000.
- 20. Otwinowski Z., Minor W. // Methods Enzymol. 1997. 276. P. 307.
- 21. Coppens P., Leiserowitz L., Rabinovich D. // Acta Crystallogr. 1965. P. 1035 1038.
- 22. Sheldrick G.M. // Acta Crystallogr. 2008. A64. P. 112.
- 23. Farrugia L.J. // J. Appl. Cryst. 1999. 32. P. 837.
- 24. Farrugia L.J. // J. Appl. Cryst. 1997. 30. P. 565.
- 25. Macrae C.F., Edgington P.R., McCabe P. et al. // J. Appl. Crystallogr. 2006. 39. P. 453.
- 26. Allen F.H. // Acta Crystallogr. 2002. B58. P. 380.
- 27. Hernández W., Spodine E., Beyer L. et al. // Bioinorg. Chem. Appl. 2005. 3, Nos. 3-4.
- 28. del Campo R., Criado J.J., García E. et al. // J. Inorg. Biochem. 2002. 89. P. 74 82.
- 29. Kwak H., Eom G.H., Lee S.H. et al. // J. Struct. Chem. 2010. 51, N 5. P. 923 930.
- 30. McKinnon J.J., Mitchell A.S., Spackman M.A. // Chem. Eur. J. 1998. 4. P. 2136.
- 31. Wolff S.K., Grimwood D., McKinnon J. et al. CrystalExplorer 2.1 (381). University of Western Australia, Australia, 2005.