УДК 621.4/.6:533.6

Расчет критических режимов эжекторов с сужающимися камерами

А.В. Соболев

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

E-mail: sobolev@itam.nsc.ru

Представлена методика расчета эжекторов с сужающимися камерами с учетом конденсации в рабочем сопле и камере эжектора. Выполнены расчеты в широком диапазоне температур рабочего и низконапорного газов. Выявлены различия в свойствах газовых и паровых эжекторов. В газовых эжекторах предельные коэффициенты эжекции достигаются при увеличении температуры рабочего газа, в паровых эжекторах наиболее высокие характеристики получены при использовании насыщенного пара.

Ключевые слова: газовые и паровые эжекторы, реальные газы, конденсация, критические режимы, расчетные характеристики.

Введение

В газовых или паровых эжекторах с сужающимися камерами наиболее высокие расходные характеристики реализуются на критических режимах. Произведение степени сжатия на коэффициент эжекции в них нередко превышает две единицы, что значительно лучше характеристик других схем эжекторов. Этим объясняется исследовательский интерес к эжекторам с сужающимися камерами, несмотря на существующие сложности с обеспечением их запуска.

Вопросы расчета и проектирования эжекторов с коническими камерами рассматривались в работе [1]. Представлены эжекторы, камеры смешения которых состоят из конического и цилиндрического участков. Конический участок короткий, эжектирующий и низконапорный газы перемешиваются в нем только частично. Завершается смешение в цилиндрическом участке камеры достаточно большого сечения. Вероятно, в экспериментальных эжекторах этой работы в основном были реализованы докритические режимы течения. Несмотря на использование высокоскоростных паровых струй рабочего газа, произведение степени сжатия на коэффициент эжекции ограничено значениями 1,5–2.

В работе [2] представлена методика расчета изобарических эжекторов. Изобарическими называются эжекторы, в которых реализуется изобарический процесс смешения и конец изобарического участка, то есть сечение полного перемешивания, является входом в горло. Для обеспечения изобарического смешения в эжекторе с обычным центральным соплом нужна длинная, восемь калибров и более, камера.

В эжекторах с изобарическим процессом смешения реализуется низкое давление на стенках, в них может использоваться горло малого сечения для преобразования сверхзвукового течения в дозвуковое. Как следствие, эти эжекторы имеют более высокие характеристики. Интенсификация смешения позволяет обеспечить полное перемешивание и укоротить камеры эжекторов, становится возможным установление критического режима с расходом низконапорного газа.

Задачей расчета при разработке эжектора является определение газодинамических характеристик и геометрических размеров эжектора. Свойства рабочего и низконапорного газов и их параметры в заторможенном состоянии обычно считаются заданными. Для выделения единственного решения требуется дополнительно задать значения приведенной скорости низконапорного газа в газодинамическом горле λ_s и смеси в выходном сечении камеры смешения λ_3 . Задание оптимальных значений приведенных скоростей λ_s , λ_3 и величины потерь позволяет в одной серии последовательных приближений вычислить коэффициент эжекции при заданной степени сжатия.

Первоначально свойства эжекторов изучались в экспериментах. Испытывался ряд воздушных эжекторов высоких степеней сжатия с центральным соплом рабочего газа, в которых варьировались интенсивность смешения, длина и профиль камеры, сечение горла. Использованы конические рабочие сопла с полууглом раствора 10° . В качестве интенсификаторов смешения применены табы [3]. Для эжекторов с наиболее высокими характеристиками выполнены расчеты, результаты которых обобщены эмпирическими зависимостями. Приведенная скорость в газодинамическом горле описывается зависимостью $\lambda_s = 0.35 + 0.9k$ ($k \le 0.27$), общий коэффициент потерь количества движения — $\zeta = 0.01(l_{23}/d_2 + 1)$, где l_{23} — длина участка сверхзвукового течения между сечением полного перемешивания и входом в горло. Коэффициент потерь имеет значения $\zeta = 0.025-0.05$.

Для повышения достоверности расчетов требуется учет всех возможных потерь. Потери при изобарическом смешении, в прямом скачке в сверхзвуковом диффузоре и потери в дозвуковом диффузоре учитываются расчетной схемой. Дополнительно действуют механизмы диссипативных потерь от вихреобразования при смешении, в пограничном слое, на скачках уплотнения. Кроме того, при малых сверхзвуковых скоростях на входе в горло срыв критического режима происходит при повышенном расходе рабочего газа. Эффект наблюдается при уменьшении расхода рабочего газа. С уменьшением расхода скорости в пристенных областях эжекторов с центральным соплом становятся дозвуковыми. Повышенное давление проникает по дозвуковым областям вверх по потоку, происходит преобразование режима течения в докритический. В одномерной теории рассматриваются равномерные профили, поэтому ухудшение характеристик, связанное с преждевременным срывом критического режима, учитывается в ней фиктивными потерями. В предлагаемом расчете все дополнительные потери учитываются общим коэффициентом потерь.

Течение в паровом эжекторе, а также истечение воздуха из сопла при большом перепаде давлений происходит с конденсацией. Расчеты проводятся с использованием термодинамических соотношений равновесной конденсации. В ограниченном диапазоне температур и давлений можно использовать описание термодинамических потенциалов формулами для совершенного газа с постоянными термодинамическими коэффициентами. Истечение из сопла происходит с большими изменениями температур и давлений, в этом случае приходится пользоваться табличными значениями термодинамических потенциалов реальных газов. Термодинамические свойства воздуха определены по справочнику [4], воды и водяного пара — по справочнику [5].

1. Расчетные соотношения

Расчетная схема течения представлена на рис. 1. На участке между входным сечением I и газодинамическим горлом происходит ускорение рабочего и низконапорного газов без смешения. Полагается, что в газодинамическом горле статические давления газов выравниваются. На участке между газодинамическим горлом и сечением 2 полного перемешивания происходит смешение газов при постоянном давлении. Распределение газодинамических величин в сечении 2 равномерное, скорость течения сверхзвуковая. Сверхзвуковое течение замедляется перед входом в горло 3. В горле 3-4 сверхзвуковое течение преобразуется в дозвуковое. Далее, в дозвуковом диффузоре происходит замедление скоростей до малых дозвуковых, статическое давление повышается до давления в окружающей среде.

Расчет газодинамического горла позволяет определить исходные данные для расчета смешения. Параметры во входном сечении эжектора легко определяются через параметры в газодинамическом горле. Недостатком этого способа расчета является небольшое завышение суммарного импульса газов при использовании недорасширенного сопла.

Приведенная скорость низконапорного газа λ_s в газодинамическом горле задана, давление $p=p_{0s}\pi(\lambda_s)$. Для изоэнтропийного течения пара как двухфазной среды между входом в сопло и газодинамическим горлом на основании второго закона термодинамики $S_0=(1-y)\,S_g+yS_l$ (см. [6]). В газодинамическом горле выполняется условие на линии насыщения: $S_g-S_l=r/T_c$, где S_0 — энтропия пара в объеме перед соплом, S_g — энтропия газовой фазы пара в газодинамическом горле, S_l — энтропия жидкой фазы в газодинамическом горле, S_l — влажность, S_l — теплота испарения, S_g — температура в точке росы при давлении S_g в газодинамическом горле. Из представленных соотношений следует формула для определения количества тепла, выделившегося в единице массы пара при конденсации: S_g = S_g в тех случаях, когда истечение из сопла происходит без конденсации, газ расширяется до температуры S_g при которой S_g = S_g .

Уравнение энтальпии для единицы массы пара при адиабатическом истечении имеет вид

$$h_0 = (1 - y)h_g + yh_l + u^2 / 2. (1)$$

Скорость пара в газодинамическом горле определяется из (1) с использованием соотношения на линии насыщения $h_{\sigma} = h_{l} + r$:

$$u_p = \varphi \sqrt{2(h_0 - h_g + yr)},\tag{2}$$

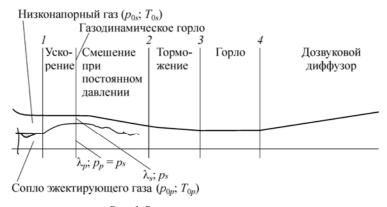


Рис. 1. Расчетная схема эжектора.

где h_0 — энтальпия пара на входе в сопло, h_g — энтальпия газовой фазы пара в газодинамическом горле, φ — коэффициент скорости сопла.

Плотность газовой фазы в газодинамическом горле определяется из уравнения состояния $\rho_g = p/RT$. Плотность газовой фазы пропорциональна ее массовой доле $\rho_g = \rho(1-y)$, откуда $\rho = \rho_g/(1-y)$.

Расход низконапорного газа G_s и коэффициент эжекции k заданы, расход рабочего газа $G_p=G_s/k$. Сечение рабочего газа $A_p=G_p/\rho u$, сечение низконапорного газа

$$A_s = \frac{G_s}{\sigma p_{0s} q(\lambda_s)},\tag{3}$$

где $\sigma = \frac{\gamma}{a_*} \left(\frac{2}{\gamma+1}\right)^{\gamma/\gamma-1}$, $a_* = \left(\frac{2\gamma}{\gamma+1}RT_0\right)^{1/2}$. Сечение газодинамического горла $A = A_p + A_s$.

Скорость смеси в сечении полного перемешивания, на основании закона сохранения количества движения

$$u_2 = \frac{u_p + k a_{*s} \lambda_s}{(1+k)} (1-\zeta), \tag{4}$$

где k — коэффициент эжекции, a_{*s} — критическая скорость звука низконапорного газа. Все потери в эжекторе отнесены к сечению полного перемешивания, ζ — коэффициент потерь.

Физические свойства сухой смеси, $y_2 = 0$. Весовая концентрация рабочего газа в смеси $g_p = 1/(1+k)$, низконапорного газа — $g_s = k/(1+k)$. Молекулярный вес смеси $M = \left(g_p/M_p + g_s/M_s\right)^{-1}$. Энтальпия, теплоемкость, энтропия смеси определяются по аддитивному правилу $h = h_p g_p + h_s g_s$. Газовая постоянная $R = R_{yh}/M$, теплоемкость при постоянном объеме $c_v = c_p - R$, показатель адиабаты $\gamma = c_p/c_v$.

Температура торможения смеси T_{02} . В заторможенном состоянии смесь сухая. Сначала определяются табличное значение энтальпии смеси $h_t = h_{pl}g_p + h_{st}g_s$ и теплоемкости c_{pt} при табличных значениях температуры $T_t \approx T_{02}$ и давления $p_t \approx 1,2p_h$, выбранных вблизи ожидаемых параметров торможения. Тогда $T_{02} = T_t + (h_0 - h_t)/c_{pt}$. Для повышения точности при определении энтальпий компонентов смеси учитываются парциальные давления.

Влажность смеси в сечении полного перемешивания определяется последовательными приближениями. При выбранном значении влажности y_2 , которая выражается в долях от исходной массы рабочего пара, определяется молярная доля газовой фазы пара

$$x_p = \frac{g_p(1 - y_2)/M_p}{g_p(1 - y_2)/M_p + g_s/M_s}.$$
 (5)

Парциальное давление пара $p_p = p_2 x_p$, низконапорного газа $p_s = p_2 - p_p$. Для вычисления температуры в точке росы водяного пара используется аппроксимационная формула $T_2 = 368 + 21,56\ln(p_p + 0,0066)$, в которой давление берется в барах. Формула дает температуру в точке росы с ошибкой не более 1° в диапазоне давлений от 0,01 до 0,5 бар. Температура смеси равна температуре в точке росы.

Энтальпию пара на линии насыщения можно вычислить по формуле $h_{gp} = 1888,7 + 2,5943T_2 - 0,00129T_2^2$ [кДж/кг], которая обеспечивает точность не хуже 1 кДж/кг по отношению к табличным значениям справочника [5] в интервале температур от 273 до 373 К. Теплоту испарения в этом диапазоне можно определить по формуле $r = 3166,6 - 2,431T_2$. Энтальпия воздуха при давлении 0,1 бар определяется по формуле $h_s = 1,004T_2 - 0,6$ с точностью не хуже 0,2 кДж/кг. Энтальпия влажной паровоздушной смеси

$$h_2 = [h_{gp}(1 - y_2) + h_{lp}y_2]g_p + h_sg_s = h_{gp}g_p + h_sg_s - Q,$$
 (6)

где $Q = ry_2g_p$ — тепло, выделившееся при конденсации. Уточненное значение y_2 определяется из уравнения энтальпии

$$h_0 = h_2 + u_2^2 / 2. (7)$$

Знание парциальных давлений позволяет, используя уравнение Клапейрона, вычислить плотности газовых фаз компонентов смеси и плотность смеси: ρ_2 = $\rho_{2p}/(1-y_2)+\rho_{2s}$. Площадь сечения $A_2=G_2/\rho_2u_2$.

Средняя теплоемкость сухой парогазовой смеси $c_m = (h_0 - h_{gp}g_p - h_s g_s)/(T_{02} - T_2)$

Полное давление сухой смеси. Если влажность $y_2 < 0$, то расчет эжектора ведется для сухой смеси. Температура сухой смеси $T_2 = T_{02} - u_2^2/2c_m$. Рассматривая сухую смесь как совершенный газ, можно определить показатель адиабаты, критическую скорость звука, приведенную скорость $\lambda_2 = u_2/a_*$ и полное давление

$$p_{02} = p_2/\pi(\lambda_2),\tag{8}$$

где $\pi(\lambda)$ — газодинамическая функция давления.

Полное давление влажной смеси определяется при изоэнтропийном торможении. Энтропия смеси в сечении полного перемешивания

$$S_2 = [S_{gp}(1 - y_2) + S_{lp}y_2]g_p + S_{2s}g_s = S_{gp}g_p + S_sg_s - Q/T_2.$$
(9)

Выберем следующий путь перехода смеси в заторможенное состояние. Сначала подведем тепло Q к жидкой фазе пара при постоянном парциальном давлении пара. Получим сухую парогазовую смесь с прежней температурой, давлениями и энтропией $S_2 + Q/T_2$. Затем сухую смесь остановим в процессе с отводом тепла, так что ее энтропия снизится до исходной величины S_2 .

Парогазовая смесь рассматривается как совершенный газ. Для расчета полного давления совершенного газа с постоянной теплоемкостью используется форму-

$$S_0 = S_1 + c_n \ln(T_0/T_1) - R \ln(p_0/p_1). \tag{10}$$

Отношение полного давления пара к его парциальному давлению представляется в виде

$$\frac{p_{0p}}{p_{2p}} = \frac{p_{02}}{p_2} \frac{p_2}{p_{2p}} \frac{p_{0p}}{p_{02}} = \frac{p_{02}}{p_2} \frac{x_{0p}}{x_{p2}}.$$
 (11)

Энтропия пара в заторможенном состоянии на основании (10) и (11):

$$S_{0p} = S_{2p} + y_2 r / T_2 + c_{pp} \ln(T_{02} / T_2) - R_p \ln(p_{02} / p_2) - R_p \ln(x_{0p} / x_{p2}).$$

Аналогично представляется энтропия низконапорного газа:

$$S_{0s} = S_{2s} + c_{ps} \ln(T_{02}/T_2) - R_s \ln(p_{02}/p_2) - R_s \ln(x_{0s}/x_{s2}).$$

Записав формулу для энтропии парогазовой смеси в заторможенном состоянии и вычтя из нее условие постоянства энтропии $S_0 = S_2$, после несложных преобразований получим

$$p_{02} / p_2 = e^{Q/RT_2} (T_{02} / T_2)^{\gamma/(\gamma - 1)} (x_{p2} / x_{0p})^{R_p g_p / R} (x_{s2} / x_{0s})^{R_s g_s / R},$$
(12)

где показатель адиабаты смеси вычислен по средней теплоемкости c_m .

Совместное влияние двух последних сомножителей в (12) при небольших влажностях характеризуется величиной второго порядка малости. Действительно,

$$(x_{p2}/x_{0p})^{R_pg_p/R} = (1+\delta/x_{0p})^{R_pg_p/R} = 1+(R_pg_p/Rx_{0p})\delta + \dots = 1+\delta + \dots,$$

где $\delta = x_{p2} - x_{0p}$ — малая величина. Типичное значение $\delta = -0.02$ при влажности 0.1. Аналогично: $(x_{s2}/x_{0s})^{R_s g_s/R} = 1 - \delta + ...$, а произведение равно $1 + a\delta^2 + ...$. Практические расчеты удобно проводить по формуле (12) без учета молярных концентрапий.

Формула (12) эквивалентна известной формуле для течения газа с теплоотводом (при $S_1 \ge S_2$)

$$p_2 / p_1 = e^{(S_1 - S_2)/R} (T_2 / T_1)^{\gamma/(\gamma - 1)}$$
.

Течение в горле и дозвуковом диффузоре. Полные давление и температура смеси газов во входном сечении горла сохраняют значения сечения 2. Приведенная скорость λ_3 на входе в горло задается. Сечение A_3 определяется по формуле (3), в которую подставляются соответствующие величины. Полное давление уменьшается в прямом скачке: $p_{04} = p_{03}q(\lambda_3)/q(\lambda_4)$, где $\lambda_4 = 1/\lambda_3$. Последовательные приближения выполняются до тех пор, пока давление p_{04} не сравнится с давлением на входе в дозвуковой диффузор $p_{0d} = 1,08p_h$.

2. Оптимальные значения скорости низконапорного газа

Наличие оптимальных значений приведенной скорости λ_s определяется свойствами процесса изобарического смешения. С ростом λ_s увеличивается приведенная скорость λ_2 , что ведет к росту p_{02} . Однако при этом уменьшается статическое давление в камере и вместе с ним давление p_{02} . Совместное действие двух факторов порождает максимум расходных характеристик при оптимальном λ_s . Расчеты по формулам (4) и (12) при скорости рабочего газа $u_p = 2, 1a_{*s}$ показали, что при коэффициенте эжекции k=0,05 максимум давления p_{02} достигается при $\lambda_s=0,3$, коэффициенту эжекции 0,1 соответствует $\lambda_s=0,5$ и коэффициенту эжекции 0,2 соответствует $\lambda_s=0,7$. С ростом коэффициента эжекции максимум полного давления смещается в сторону высоких значений λ_s .

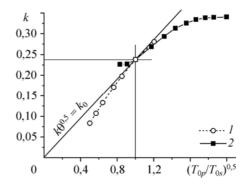
Оптимальные расчетные значения λ_s приближаются к критическим при коэффициентах эжекции k > 0,2. Это выше максимальных значений $\lambda_s \approx 0,6$, полученных из экспериментов. Дело в том, что значения приведенной скорости λ_s , полученные расчетом при изобарических условиях в газодинамическом горле, являются условными. В действительности в газодинамическом горле и его окрестности реализуются неизобарические условия. Рабочий газ по инерции расширяется до давления ниже изобарического. Образуется бочка рабочего газа, давление в которой ниже давления в низконапорном газе, а сечение превышает изобарическое. Сечение низконапорного газа уменьшается, скорость возрастает. При достижении

низконапорным газом критической скорости газодинамическое горло запирается. Предельное значение приведенной изобарической скорости $\lambda_s = 0.6$ достигается при запирании эжектора. Более высокие значения изобарической скорости низконапорного газа не реализуются.

Расширение рабочего газа при истечении в камеру эжектора зависит от нерасчетности сопла и угла его раскрытия, размеров камеры. Точное определение условий запирания для конкретного эжектора возможно опытным путем или строгим расчетом течения. Представленные результаты имеют рекомендательный характер.

3. Воздушные эжекторы

Большой интерес представляет зависимость характеристик эжектора от отношения температур газов. Приведенная скорость в газодинамическом горле во всех последующих расчетах принята $\lambda_s = 0.6$, скорость на входе в горло эжектора $\lambda_3 = 1,4$. Коэффициент потерь определялся по приведенной во введении формуле, в которой длина сверхзвукового участка l_{23} определена для угла наклона образующей конуса 3°. Коэффициент скорости сопла $\varphi = 0.97$. Выполнены два варианта расчетов эжекторов с полным давлением рабочего газа 35 бар, давлением низконапорного газа 0,1 бар и степенью сжатия 10. В одном варианте постоянной поддерживалась температура рабочего газа T_{0p} = 290 K, температура низконапорного газа изменялась (круглые обозначения на рис. 2). В другом варианте постоянной поддерживалась температура низконапорного газа T_{0s} = 290 K, квадратные обозначения на рис. 2. Полезно отметить, что значение $k_0=0{,}235$ при $T_{0p}=T_{0s}$ является экспериментально подтвержденным. С ростом отношения температур T_{0p}/T_{0s} коэффициент эжекции возрастает, асимптотически приближаясь к значению k=0,34 при $T_{0p}/T_{0s}=4$. Очевидно, что использование рабочего газа с температурой, более чем вдвое превышающей температуру низконапорного газа, неэффективно из-за повышенных затрат энергии.

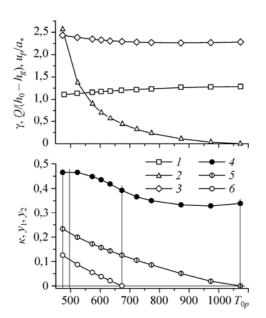

При температуре рабочего воздуха 200-240 К убывание коэффициента эжекции замедляется, k=0,225. Это следствие конденсации азота и кислорода при расширении воздуха в сопле. Использование сопла, рассчитанного с учетом тепловыделения в сверхзвуковой части при конденсации, улучшает характеристики эжектора.

Прямой линией, проходящей через начало координат, на рис. 2 представлена приближенная зависимость $k\sqrt{\theta}=k_0$, где $\theta=T_{0s}/T_{0p}$. Приближенные значения получаются при замене критической скорости звука $a_{*2}/a_{*p}=\sqrt{(k\theta+1)/(k+1)}$ в сечении полного перемешивания ее приближенным значением $a_{*2}/a_{*p}=$

 $=(k\sqrt{\theta}+1)/(k+1)$ (см. (4), где в левую часть формулы подставляется $u_2=\lambda_2 a_{*2}$). Точные значения критической скорости звука больше приближенных, поэтому

Рис. 2. Влияние температуры на коэффициент эжекции воздушных эжекторов со степенью сжатия $\varepsilon = 10$.

I — T_{0p} = 290 K, T_{0s} изменяется; 2 — T_{0p} изменяется, T_{0s} = 290 K.



точные значения приведенной скорости λ_2 в сечении полного перемешивания и коэффициентов эжекции получаются меньше приближенных. Снижение коэффициентов эжекции достигает 8–8,5 % при двукратном различии температур рабочего и низконапорного газов в ту или другую сторону.

4. Паровые эжекторы

Совершенно другой вид имеет зависимость коэффициента эжекции от температуры в паровых эжекторах. На рис. 3 представлены результаты расчета эжекторов со степенью сжатия 10. В крайней правой точке при $T_{0p} = 1073~{\rm K}$ истечение пара из сопла происходит без конденсации. Коэффициент эжекции при использовании пара с давлением 15 бар такой же, как при эжектировании воздухом с давлением 35 бар, k = 0.34. При уменьшении полной температуры пара истечение из сопла происходит с конденсацией и при температурах ниже 950 К коэффициент эжекции увеличивается. Расчет сопла с учетом тепловыделения при конденсации приводит к увеличению приведенной скорости влажного пара. Тепло, выделившееся при конденсации, и приведенная скорость показаны на верхнем графике рис. 3 треугольниками и ромбами. Приведенная скорость λ_n возрастает с уменьшением температуры пара. Абсолютная скорость рабочей струи при снижении температуры T_{0p} уменьшается, однако более важной величиной для эжектора является приведенная скорость. Это можно пояснить следующими рассуждениями. Из формулы (4) видна линейная зависимость приведенной скорости смеси в сечении полного перемешивания от приведенной скорости рабочего пара, $\lambda_2 = a\lambda_p + b$. Несмотря на то, что коэффициенты а и в при постоянном коэффициенте эжекции зависят от параметров газов, качественно характер зависимости при изменении температуры торможения пара сохраняется. В соответствии с формулой (8) полное давление смеси p_{02} также оказывается функцией приведенной скорости λ_p . В итоге увеличение полного давления p_{02} с ростом λ_p проявляется в более высоких характеристиках эжектора.

При температурах T_{0p} < 670 К конденсированная фаза появляется в сечении полного перемешивания (светлые круглые символы на рис. 3). Появление влаги в камере смешения означает повышение температуры, уменьшение числа Маха и

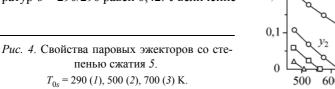
полного давления в сравнении с переохлажденной смесью. С увеличением влажности в камере рост коэффициента эжекции замедляется. При температуре пара меньше 495 К небольшое количество влаги появляется во входном сечении горла эжектора. Ее влияние на течение в горле в расчете не учитывается. Коэффициент эжекции достигает максимального значения k = 0,465 при температуре пара перед соплом 473 К. При этой температуре пар становится насыщенным на входе в сопло.

 $Puc.\ 3.$ Свойства паровых эжекторов со степенью сжатия 10. Низконапорный газ — воздух, $T_{0s}=290\ {
m K}.$

Представляет интерес прямая оценка влияния влажности смеси в камере на свойства эжектора. Для этого полное давление влажной смеси сравнивается с полным давлением переохлажденной смеси. Полная энтальпия и скорость переохлажденной смеси остаются прежними. Уменьшение полного давления во влажной смеси определяется на основании (12)

$$p_{02} / p'_{02} = e^{Q/RT_2} / (T_2 / T'_2)^{\gamma/(\gamma - 1)},$$
 (13)

где параметры переохлажденной смеси обозначены штрихом. Отношение температур $\frac{T_2}{T\,'_2} = \frac{T_2}{T_2 - Q/\,c_p} = [1 - \frac{(\gamma - 1)}{\gamma} \frac{Q}{RT_2}]^{-1}$. Производная по Q от правой части

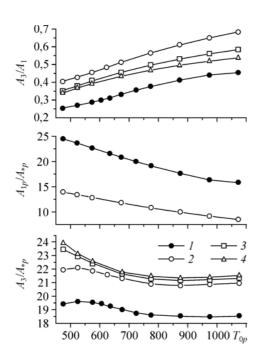

формулы (13) отрицательна. Следовательно, p_{02} / p'_{02} <1 при Q > 0. Для рассматриваемых эжекторов при температуре пара 473 К максимальное значение Q/c_pT_2 = 0,42; p_{02} / p'_{02} = 0,6.

Среднее значение теплоемкости влажного пара при расширении в сопле (см. (2)) $c = [h_0 - (h_g - yr)]/(T_0 - T_g)$. Если рассматривать пар как совершенный газ с теплоемкостью $c_p = c$, то показатель адиабаты $\gamma = c_p/(c_p - R)$. Значения показателя адиабаты представлены на рис. З квадратными символами. Показатель адиабаты увеличивается с ростом температуры пара от значения $\gamma = 1,10$ до $\gamma = 1,28$. Используя полученные значения показателя адиабаты, можно выполнить расчет параметров влажного пара традиционным способом с использованием газодинамических функций. Таким способом определялась скорость истечения из сопла в работе [1].

Влияние температуры низконапорного газа изучено в эжекторах со степенью сжатия 5 (рис. 4). Расчеты выполнены для трех температур низконапорного воздуха. С ростом температуры низконапорного воздуха массовая доля влаги y_2 в сечении полного перемешивания уменьшается. Вследствие этого максимальные коэффициенты эжекции, достигаемые при использовании насыщенного пара, убывают значительно меньше, чем $T_{0s}^{-1/2}$.

Вредное влияние влажности в камере смешения можно видеть из сопоставления свойств парового и воздушного эжекторов. Влияние влажности несущественно при температуре низконапорного воздуха 700 К. Коэффициент эжекции парового эжектора в этом случае равен 0,66. Коэффициент эжекции воздушного эжектора со степенью сжатия 5, с отношением температур $\theta = 700/290 = 2,41$ и прочими параметрами, указанными в разделе 3, равен 0,24. Приращение коэффици-

ента эжекции в паровом эжекторе составляет 175 %. Присутствие влаги в камере парового эжектора становится значительным при температуре низконапорного воздуха 290 К. Коэффициент эжекции при отношении температур $\theta = 290/473$ равен 0,725. Коэффициент эжекции воздушного эжектора с отношением температур $\theta = 290/290$ равен 0,42. Увеличение



коэффициента эжекции в паровом эжекторе при наличии влаги в камере значительно меньше (на 71 %). Из представленных примеров видно, что использование паровых эжекторов наиболее выгодно при повышенных температурах низконапорного газа.

Геометрические характеристики рассмотренных эжекторов представлены на рис. 5. На нижнем графике показан основной геометрический параметр эжектора — отношение площади сечения горла к критическому сечению рабочего сопла. Площадь критического сечения рабочего сопла посчитана по формуле (3) для сухого пара. Горло расширяется с увеличением коэффициента эжекции и температуры низконапорного газа. На среднем графике представлена степень расширения рабочего сопла. При расчете принято, что давление в выходном сечении сопла равно давлению в газодинамическом горле. Степень расширения сопла увеличивается со степенью сжатия эжектора и с уменьшением температуры пара. На верхнем графике представлено относительное сечение горла эжектора. Относительное сечение горла увеличивается с температурой пара и уменьшается с ростом степени сжатия и температуры низконапорного газа.

Потери в сопле при течении двухфазной смеси возрастают, вследствие этого коэффициент скорости φ может уменьшаться [6]. В качестве примера выполнены расчеты эжекторов при температуре пара 473 К и значении коэффициента скорости $\varphi = 0.95$. Для эжектора со степенью сжатия 10 получен коэффициент эжекции 0,42, т. е. на 9,7 % меньше значения 0,465 (см. рис. 3); для эжектора со степенью сжатия 5 коэффициент равен 0,67, т. е. на 7,6 % меньше значения 0,725 (см. рис. 4).

Таким образом, расчетами показано, что в газовых эжекторах рост коэффициента эжекции с ростом температуры рабочего газа ограничен, он асимптотически приближается к постоянной величине. В паровых эжекторах наиболее высокие коэффициенты эжекции достигаются при минимальной температуре пара. Абсолютная и приведенная скорости струи пара значительно выше соответствующих скоростей воздушной струи, поэтому в паровых эжекторах расчетные значения

произведения степени сжатия на коэффициент эжекции могут превышать четыре единицы. Преимущество паровых эжекторов над воздушными наиболее велико при эжектировании газов с повышенной температурой. Оно уменьшается при эжектировании холодных газов из-за наличия влаги в камере смешения и ухудшения восстановления давления.

Для воздушных эжекторов рассматриваемой схемы получены единичные экспериментальные результаты, подтверждающие их свойства, для паровых эжекторов таких результатов нет.

Puc. 5. Геометрические характеристики паровых эжекторов.

 $\varepsilon = 10 (1), 5 (2, 3, 4); T_{0s} = 290 (1, 2), 500 (3), 700 (4) \text{ K}.$

Представленные расчетные результаты являются основой для экспериментальных исследований паровых эжекторов.

Условные обозначения

p — давление, H/M^2 ,	h — энтальпия, Дж/кг,
$ ho$ — плотность, кг/м 3 ,	у — влажность,
<i>T</i> — температура, K,	r — теплота испарения, Дж/кг,
u — скорость, м/с,	Q — тепло, выделяемое при конденсации, Дж/кг,
a — скорость звука, м/с,	х — молярная концентрация,
c — теплоемкость, Дж/кг/град,	$\lambda = u/a_*$ — приведенная скорость,
γ — показатель адиабаты,	$\pi(\lambda) = p/p_0$ — газодинамическая функция давле-
A — площадь сечения, M^2 ,	ния,
G — массовый расход, кг/с,	$q(\lambda) = \rho u/(\rho u)_*$ — газодинамическая функция рас-
S — энтропия, Дж/кг/град,	хода

Индексы

n nofoliuji non uliu roo	v — теплоемкость при постоянном объеме,
p — рабочий пар или газ,	v — теплоемкость при постоянном объеме,
теплоемкость при постоянном давлении,	t — табличное значение,
s — низконапорный газ,	<i>m</i> — смесь пара и газа,
g — газовая фаза,	h — внешняя среда,
l — жидкая фаза, влага,	0 — абсолютные параметры,
c — точка росы,	1, 2, 3, 4 — сечения эжектора.
 тараметры критического сечения, 	

Список литературы

- 1. Соколов Е.Я., Зингер Н.М. Струйные аппараты. Изд. 2-е. М.: Энергия, 1970. 288 с.
- Screiber M., Acebal R. Multi-stage ejector methodology: model enhancement and comparison to high energy laser experiments // AIAA Paper. 1988. No. 88-2753.
- 3. Соболев А.В., Запрягаев В.И., Мальков В.М. Применение насадок шевронов и табов для улучшения расходных характеристик газовых эжекторов // Теплофизика и аэромеханика. 2007. Т. 14, № 2. С. 201–208.
- **4. Варгафтик Н.Б.** Справочник по теплофизическим свойствам газов и жидкостей. Изд. 3-е. М.: ООО «Старс», 2006. 720 с.
- **5.** Вукалович М.П., Ривкин С.Л., Александров А.А. Таблицы теплофизических свойств воды и водяного пара. М.: Из-во стандартов, 1969. 408 с.
- **6.** Дейч М.Е., Филиппов Г.А. Газодинамика двухфазных сред. 2-е изд., перераб. и.доп. М.: Энергоиздат, 1981. 472 с.

Статья поступила в редакцию 10 декабря 2008 г., после переработки 3 марта 2011 г.