УДК 534.222.2

МОДЕЛИРОВАНИЕ РАВНОВЕСНОГО СГОРАНИЯ КЕРОСИНА СМЕСЬЮ ГАЗООБРАЗНЫХ УГЛЕВОДОРОДОВ

В. А. Левин 1 , Г. Д. Смехов 2 , А. Н. Хмелевский 2

Показана возможность моделирования состава и параметров состояния газа, образующегося в результате равновесного сгорания авиационного керосина в воздухе, путем определения тех же величин для определенной смеси углеводородных горючих. В качестве таковой может быть смесь равных количеств метана и ацетилена. Рассчитанный равновесный состав для модельной смеси в точности совпадает с составом продуктов сгорания керосина при одинаковых значениях давления (или плотности), температуры и коэффициента избытка окислителя. При сгорании керосина и модельной смеси в режиме с постоянным давлением (или плотностью) можно обеспечить удовлетворительное совпадение температур конечных продуктов и их составов, если в качестве окислителя для смеси использовать обедненный кислородом воздух.

Ключевые слова: авиационный керосин, равновесное сгорание, моделирование, метан, ацетилен.

Керосин является основным топливом, используемым в авиации. На первой стадии горения керосин переходит из жидкого состояния в газообразное и далее происходит окончательное сгорание с образованием конечных продуктов. При экспериментальных исследованиях новых типов реактивных двигателей, по существу, нет необходимости в воспроизведении первой стадии сгорания керосина, если конечный состав газа в камере сгорания равновесный. Для отработки рабочего процесса двигателя можно использовать модельную смесь газообразных горючих, при сгорании которой образуется газ такого же состава и с такими же параметрами, как и при сгорании керосина в воздухе. Если моделирование осуществить достаточно точно, то использование такой смеси будет иметь и определенные преимущества, поскольку в этом случае отсутствует влияние на результаты исследований неопределенностей, связанных с наличием первой стадии горения керосина.

В работе показано, что обсуждаемое моделирование равновесного сгорания керосина действительно можно осуществить. Предложены конкретные составы модельных смесей, эквивалентных керосину в газовой фазе, и приведены результаты расчетов, демонстрирующие соот-

ветствие компонентных составов и параметров равновесного сгорания модельных смесей и керосина.

1. МОДЕЛИРОВАНИЕ КОМПОНЕНТНОГО СОСТАВА ПРОДУКТОВ СГОРАНИЯ КЕРОСИНА

Керосин представляет собой смесь углеводородов различного типа и состава, в которой полное число атомов водорода превышает число атомов углерода в 1.956 раза и значение низшей теплоты сгорания составляет $\Delta H = 4.30952 \cdot 10^4 \ \mathrm{kДж/kr}$ при стандартной температуре $T = 298.15 \ \mathrm{K}$ [1]. Количество атомов углерода в молекулах углеводородов смеси изменяется в пределах $10 \div 14$ [2]. Таким образом, условной молекулой керосина можно считать молекулу $\mathrm{C_{12}H_{24}}$ с энтальпией образования $H_f^0(298.15 \ \mathrm{K}) = -3.83894 \times 10^2 \ \mathrm{kДж/моль}$. Предполагается, что окислителем является стандартный воздух и в результате сгорания образуется газ в термически и химически равновесном состоянии.

Моделирование керосина смесью других газообразных горючих возможно в силу того обстоятельства, что равновесный состав любого газа при заданных значениях температуры T и плотности ρ или температуры T и давления p зависит лишь от общего числа атомов элементов в начальной смеси. Это следует из закона сохранения элементного состава

¹Институт автоматики и процессов управления ДВО РАН, 690041 Владивосток

 $^{^2}$ Институт механики Московского государственного университета им. М. В. Ломоносова, 119192 Москва smekhov@imec.msu.ru

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты N 05-08-33391a, 05-01-00004).

химически реагирующей газофазной системы и закона действующих масс, лежащего в основе определения компонентного состава газа. Если подобрать смесь углеводородных горючих, создающих в единице массы топливной смеси такое же количество атомов углерода и водорода, какое создается в горючей смеси керосина и окислителя, то такие топливные смеси при одинаковых значениях указанных параметров в состоянии равновесия будут иметь одинаковый компонентный состав.

Нетрудно видеть, что смесь, состоящая из равных количеств предельного углеводорода C_nH_{2n+2} и ацетилена C_2H_2 , может моделировать керосин, так как в такой смеси отношение чисел атомов Н и С равно их отношению в условной молекуле керосина (H/C=2), и поэтому в топливной смеси можно подобрать такое значение относительной молярной концентрации модельного горючего X_m , при котором число атомов элементов каждого сорта в единице массы будет равно числу соответствующих атомов в топливной керосиновой смеси с концентрацией газообразного керосина X_k . Простейшей модельной смесью горючего этого типа является смесь метана и ацетилена — $0.5X_m(CH_4) + 0.5X_m(C_2H_2)$. Можно показать, что эквивалентные концентрации X_m и X_k в ней связаны соотношением

$$X_m = 8X_k/(1+7X_k). (1)$$

Однако применять эту формулу и подобные ей для других углеводородов нет необходимости, если рассчитывать начальные концентрации горючих с помощью коэффициентов избытка окислителя. Поскольку эквивалентные концентрации керосина и модельного горючего обеспечивают одинаковое количество элементов в единице массы топлива, значения коэффициентов избытка окислителей для эквивалентных концентраций одинаковы: $\alpha_m = \alpha_k = \alpha$.

Расчеты параметров и состава газа, образующегося при сгорании различных топливных смесей, были проведены с использованием программной системы «Мираж», предназначенной для численного моделирования равновесного и неравновесного состояний многокомпонентной реагирующей газофазной среды [3]. Для вычисления равновесного состава применялся модернизированный алгоритм, описанный в [4]. Программная система была дополнена новыми блоками для решения задач, поставленных в настоящей работе.

Основной процедурой определения состава газа в равновесном состоянии может быть расчет при заданных значениях температуры и давления либо температуры и плотности; по ряду соображений в указанной программной системе используется последняя. Применение этой процедуры к расчету составов продуктов горения модельного горючего и керосина в режиме T = const, $\rho = \text{const}$ в воздухе приводит к тождественным уравнениям и коэффициентам уравнений, что, естественно, обеспечивает идентичный состав этих продуктов. Поэтому в качестве иллюстраций приведены результаты расчетов горения топлив в режиме T = const, p = const. Для горения керосина в этом режиме имеются справочные данные [1], которые можно использовать для контроля результатов расчетов.

Расчеты проведены при p=0.2 МПа, начальной температуре горючей смеси $T_0=298.15$ К и коэффициенте избытка окислителя $\alpha=1;\ 0.8;\ 1.2.$ Результаты вычислений представлены в табл. 1–3. Во всех таблицах вариант 1 — данные из справочника [1] по горению авиационного керосина в стандартном воздухе при заданном давлении и коэффициенте избытка окислителя в камере сгорания. Вариант 2 — результаты расчета для керосина с условной формулой $C_{12}H_{24}$ при заданном давлении и температуре, соответствующей данным [1]. Вариант 3 — аналогичные данные для модельного горючего при $T={\rm const},\ p={\rm const}.$

Анализ полученных результатов позволяет сделать следующие выводы. Выбранная формула условной молекулы керосина правильно отражает свойства авиационного керосина, рассматриваемого в [1] (ср. варианты 1 и 2). Двухкомпонентное горючее, состоящее из равных количеств метана и ацетилена, полностью идентично газообразному керосину С₁₂Н₂₄ при его сгорании в условиях T = const. p = const.Состав продуктов сгорания модельного горючего в точности совпадает с составом продуктов сгорания керосина при одинаковых давлениях, температурах и коэффициентах избытка окислителя. Расчеты, проведенные для других значений давлений и коэффициента избытка окислителя, также соответствуют этим выводам.

Эта серия расчетов подтверждает сделанное выше утверждение о возможности точного моделирования равновесного состава керосиновоздушного топлива путем замены кероси-

Таблица 1

Вариант	T, K	M	$r_i \cdot 10^2$										
			Н	О	H_2	N_2	O_2	ОН	$_{\mathrm{H_2O}}$	CO	CO_2	NO	
1. Керосин [1]	2 287	28.71	0.03	0.02	0.23	72.28	0.54	0.27	12.42	1.23	11.89	0.24	
2. Керосин $(T = \text{const}, p = \text{const})$	2 287	28.66	0.03	0.02	0.22	72.30	0.52	0.26	12.57	1.20	11.74	0.23	
3. Модельное горючее $(T = \text{const}, p = \text{const})$	2 287	28.66	0.03	0.02	0.22	72.30	0.52	0.26	12.57	1.21	11.73	0.24	
4. Керосин	2 284	28.66	0.03	0.02	0.22	72.31	0.51	0.25	12.58	1.19	11.75	0.23	
5. Модельное топливо 1 $(\beta = 0)$	2 446	28.47	0.09	0.07	0.39	71.71	0.90	0.51	12.15	2.15	10.69	0.43	
6. Модельное топливо 2 ($\beta = 0.17$)	2 284	28.57	0.03	0.02	0.20	76.04	0.46	0.23	10.85	1.08	10.10	0.22	

Примечание. $\alpha=1,\ p=2$ бар, $X_k=1.150\cdot 10^{-2},\ X_m=8.518\cdot 10^{-2};\ r$ — молярная доля компонентов, M — молекулярная масса.

Таблица 2

Вариант	T, K	M	$r_i \cdot 10^2$										
			Н	О	H_2	N_2	O_2	ОН	${ m H}_2{ m O}$	СО	CO_2	NO	
1. Керосин [1]	2 167	27.59	0.05	0	2.11	68.49	0	0.04	12.98	7.12	8.39	0	
2. Керосин $(T = \text{const}, p = \text{const})$	2 167	27.53	0.05	0	2.11	68.49	0	0.03	13.15	7.07	8.24	0	
3. Модельное горючее $(T = \text{const}, p = \text{const})$	2 167	27.53	0.04	0	2.11	68.49	0	0.03	13.15	7.07	8.24	0	
4. Керосин	2 159	27.53	0.04	0	2.12	68.49	0	0.03	13.15	7.07	8.25	0	
5. Модельное топливо 1 $(\beta = 0)$	2 434	27.48	0.19	0	1.97	68.31	0.03	0.23	13.08	7.37	7.88	0.08	
6. Модельное топливо 2 ($\beta = 0.23$)	2 166	27.62	0.04	0	1.76	73.77	0	0.03	10.94	5.89	6.86	0.01	

При ме ча ни е. $\alpha=0.8,\ p=2$ бар, $X_k=1.434\cdot 10^{-2},\ X_m=1.042\cdot 10^{-1};\ r$ — молярная доля компонентов, M — молекулярная масса.

Таблица 3

Вариант	T, K	M	$r_i \cdot 10^2$										
			Н	О	H_2	N_2	O_2	ОН	${ m H}_2{ m O}$	СО	CO_2	NO	
1. Керосин [1]	2 100	28.91	0	0.02	0.03	73.51	3.14	0.18	10.74	0.13	11.00	0.39	
2. Керосин $(T = \text{const}, p = \text{const})$	2 100	28.87	0	0.01	0.02	73.54	3.12	0.17	10.86	0.12	10.85	0.38	
$3. \text{Модель ное горючее} \ (T = \text{const}, p = \text{const})$	2 100	28.87	0	0.01	0.02	73.54	3.12	0.17	10.86	0.12	10.85	0.38	
4. Керосин	2 096	28.87	0	0.01	0.02	73.54	3.12	0.17	10.86	0.12	10.85	0.38	
5. Модельное топливо 1 $(\beta = 0)$	2 278	28.80	0.01	0.05	0.07	73.26	3.12	0.36	10.68	0.41	10.53	0.57	
6. Модельное топливо 2 ($\beta = 0.17$)	2 084	28.76	0	0.01	0.02	77.20	2.67	0.15	9.36	0.10	9.35	0.35	

Примечание. $\alpha=1.2,\ p=2$ бар, $X_k=9.605\cdot 10^{-3},\ X_m=7.200\cdot 10^{-2};\ r$ — молярная доля компонентов, M — молекулярная масса.

на модельным горючим из более простых углеводородов при рассматриваемых параметрах состояния газа и об эквивалентности топлив с одинаковыми значениями коэффициента избытка окислителя.

2. МОДЕЛИРОВАНИЕ ПАРАМЕТРОВ СОСТОЯНИЯ И СОСТАВА ПРОДУКТОВ СГОРАНИЯ КЕРОСИНА

При горении керосина и модельного горючего в режиме с постоянным давлением или плотностью температуры продуктов сгорания будут различаться вследствие отличия их теплот сгорания в стандартных условиях. Это, в свою очередь, приведет к отличию составов продуктов сгорания керосина и модельного горючего. Обеспечить точное совпадение составов и температур при использовании одинакового окислителя невозможно. Значение теплоты сгорания метана $\Delta H_{\mathrm{CH_4}} =$ $5.0208 \cdot 10^4$ кДж/кг, ацетилена — $\Delta H_{\mathrm{C_2H_2}} =$ $4.8116 \cdot 10^4$ кДж/кг, поэтому температура продуктов сгорания модельной смеси будет превышать температуру сгорания керосина. В первую очередь необходимо вычислить эти температуры, чтобы выяснить степень их отличия.

Вариант 4 в табл. 1–3 соответствует горению керосина при заданном давлении в стандартном воздухе. Видно, что приведенная выше энтальпия образования условной молекулы керосина в стандартных условиях действительно обеспечивает справочные значения температуры и состава конечных продуктов в камере сгорания. Результаты расчетов горения модельного горючего при заданном давлении (модельное топливо 1, вариант 5 в таблицах) отличаются от аналогичных данных для керосина. Температура продуктов сгорания модельного топлива в воздухе, как отмечалось ранее, превышает температуру продуктов сгорания керосина. В режиме p = const превышение составляет 150 ÷ 300 К, что приводит к отличию составов. По-видимому, в некоторых случаях такое отличие может быть приемлемым. Однако имеется возможность выбрать такой состав топливной смеси, при котором температура продуктов сгорания будет близка к температуре продуктов сгорания керосина. Этого можно достичь изменением количества инертного компонента (аргона) и почти инертного азота, входящих в состав воздуха. Добавляя в стандартный воздух некоторые количества этих компонентов, можно получить обедненный кислородом воздух: при сгорании в нем модельного горючего температура равновесного газа будет меньше. Более удобным для практических целей является азот.

Разбавление воздуха можно характеризовать коэффициентом $\beta = \Delta p/p$, где Δp — увеличение парциального давления азота в некотором объеме, содержащем стандартный воздух с давлением р. Значения температуры продуктов сгорания модельного горючего в обедненном кислородом воздухе (модельное топливо 2, вариант 6 в таблицах) и его состав сравнивались с соответствующими параметрами при горения керосиновоздушного топлива при одинаковых значениях коэффициента избытка окислителя. Вследствие различного содержания кислорода количества элементов на единицу массы этих топлив различаются, и поэтому составы продуктов сгорания никогда не могут быть в точности одинаковыми, а относительные доли модельного горючего и керосина в топливах будут удовлетворять соотношению (1) только приближенно. Изменением коэффициента разбавления воздуха β можно, однако, добиться совпадения температур в керосиновоздушном и модельном топливах и минимального различия их составов. Расчеты позволяют определить значения коэффициента β для каждого состава модельного топлива 2, характеризуемого коэффициентом избытка окислителя α .

Расчеты показали, что для стехиометрической смеси модельного горючего в обедненном кислородом воздухе и для смесей с избытком окислителя температура продуктов сгорания при коэффициенте разбавления $\beta = 0.17$ coответствует температуре продуктов сгорания топлива на основе керосина. Модельные смеси с избытком горючего ($\alpha < 1$) одним значением коэффициента разбавления описать не удается; при $\alpha = 0.8$ требуется разбавление $\beta = 0.23$, при $\alpha = 0.5$ — $\beta = 0.55$, а при $\alpha = 0.25$ — $\beta = 2$. Значения температур в вариантах 4 и 6 таблиц или совпадают, или отличаются незначительно; совпадение составов в диапазоне $0.5 < \alpha < 3$ удовлетворительное, в том числе и для азота N₂, увеличение концентрации которого обусловлено обеднением воздуха кислородом.

В [5] приведены результаты расчетов параметров состояния и состава продуктов равновесного сгорания керосина, модельных смесей, а также ацетилена в режиме с постоянной плотностью при заданных значениях давления продуктов сгорания p=0.5; 1.0 и 1.5 МПа. Расчеты демонстрируют удовлетворительное совпадение температур и составов продуктов сгорания керосиновоздушного топлива и модельного топлива 2 в данном режиме с указанными выше коэффициентами β .

Разбавление воздуха можно осуществить и аргоном, но при более высоких степенях разбавления. Так, при $\alpha \geqslant 1$ требуется разбавление $\beta = 0.24$, для $\alpha = 0.5 - \beta = 0.85$, для $\alpha = 0.25 - \beta = 3$. Значения концентраций компонентов продуктов сгорания коррелируют с величинами в керосиновоздушном топливе, однако вследствие значительного содержания аргона в целом состав продуктов мало похож на «керосиновый».

Сформулируем основные выводы работы.

- 1. Показана возможность моделирования компонентного состава и параметров состояния газа, образующегося в результате равновесного сгорания авиационного керосина в воздухе, горючим, состоящим из равных количеств метана и ацетилена.
- 2. Равновесные составы продуктов сгорания керосина и модельного горючего в воздухе в точности идентичны при заданных значениях давления или плотности, температуры и коэффициента избытка окислителя.

3. При сгорании керосина и модельного горючего в режиме с заданными давлением или плотностью можно обеспечить удовлетворительное совпадение температур и составов конечных продуктов, если в качестве окислителя для модельного горючего использовать обедненный кислородом воздух.

ЛИТЕРАТУРА

- 1. **Термодинамические** и теплофизические свойства продуктов сгорания / В. Е. Алемасов, А. Ф. Дрегалин, А. П. Тишин и др. М.: АН СССР, ВИНИТИ, 1972. Т. 3.
- 2. **Физико-химические** и эксплуатационные свойства реактивных топлив: Справочник / Н. Ф. Дубовкин, В. Г. Маланичева, Ю. П. Массур, Е. П. Федоров. М.: Химия, 1985.
- 3. Смехов Г. Д. Эффективные алгоритмы расчета состояний многокомпонентного реагирующего газа в газовой динамике // Мат. моделирование. 1993. Т. 5, № 2. С. 104–118.
- 4. Смехов Г. Д., Фотиев В. А. О вычислении равновесного состава высокотемпературного газа // Журн. вычислит. математики и мат. физики. 1978. Т. 1, № 5. С. 1283–1290.
- 5. Смехов Г. Д., Хмелевский А. Н. Моделирование сгорания керосина смесью углеводородных горючих в газовой фазе: Отчет НИИ механики МГУ; № 4787. М., 2005.

Поступила в редакцию 16/V 2006 г.