2009. Tom 50. № 6

Ноябрь – декабрь

C. 1253 - 1255

КРАТКИЕ СООБЩЕНИЯ

УДК 546.3+548.737

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА [Cu(NH₃)₄](ReO₄)₂

© 2009 С.П. Храненко¹, Е.А. Шушарина^{1,2}, С.А. Громилов^{1,2}*, А.И. Смоленцев¹

Статья поступила 12 декабря 2008 г.

При T=150 К изучена кристаллическая структура [Cu(NH₃)₄](ReO₄)₂: a=6,5167(3), b=6,7790(3), c=7,4627(3) Å, $\alpha=67,336(1)$, $\beta=80,004(1)$, $\gamma=70,687(1)^\circ$, V=286,70(2) Å³, пр. гр. P-1, Z=1, $d_x=3,661$ г/см³. Проведен анализ упаковки ионов по методике выделения трансляционной подрешетки.

Ключевые слова: медь, рений, комплексная соль, кристаллохимия, рентгеноструктурный анализ.

В работах [1—3] описаны кристаллические структуры соединений [$M^A(NH_3)_4$](M^BO_4)₂ ($M^A = Pt$, Pd; $M^B = Re$, Mn) и установлена их изоструктурность с известной фазой [$Pt(NH_3)_4$]× ×(TcO_4)₂ [4]. В настоящей работе исследована кристаллическая структура комплексной соли [$Cu(NH_3)_4$](ReO_4)₂.

Синтез [Cu(NH₃)₄](ReO₄)₂. 1 ммоль ацетата меди(II) растворяли при нагревании на водяной бане в 10—15 мл воды. К полученному раствору при перемешивании прибавляли водный раствор аммиака (1:1) до рН 11—12, затем добавляли раствор 2 ммолей перрената натрия в минимальном количестве воды. При охлаждении из реакционной смеси выделился кристаллический осадок темно-сиреневого цвета, который отфильтровывали с отсасыванием, промывали ледяной водой, ацетоном и высушивали на воздухе при комнатной температуре. Выход продукта \sim 77 %.

Исследование монокристалла соли [Cu(NH₃)₄](ReO₄)₂, отобранного из общей массы кристаллов, проведено на автоматическом дифрактометре BRUKER X8 APEX (Mo K_{α} -излучение, графитовый монохроматор, область углов θ от 2,96 до 30,05°, 2578 экспериментальных и 1656 независимых отражений). Размеры монокристалла 0,42×0,08×0,04 мм. Полученные кристаллографические данные показали, что исследованная соль изоструктурна ранее изученным [M^A(NH₃)₄](M^BO₄)₂ (M^A = Pt, Pd; M^B = Re, Mn). Сравнительные кристаллографические характеристики солей с M^A = Cu, Pt даны в табл. 1. Структура решена методом тяжелого атома и уточнена в анизотропном (изотропном для атомов H) приближении. Атомы H локализованы экспериментально. При окончательном полноматричном уточнении 94 структурных параметров значения факторов расходимости составили: R_1 = 0,0182, wR_2 = 0,0503, для отражений с $I \ge 2\sigma(I)$ R_1 = 0,0179, wR_2 = 0,0501, S-фактор по F^2 — 1,112. Все расчеты выполнены по комплексу программ SHELX-97 [5]. Координаты базисных атомов и их эквивалентные тепловые факторы приведены в табл. 2, межатомные расстояния и валентные углы — в табл. 3.

Рентгенодифрактометрическое исследование синтезированного продукта проведено на дифрактометре ДРОН-УМ1 (CuK_{α} -излучение, Ni-фильтр). Полученная дифрактограмма полностью

_

¹Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

²Новосибирский государственный университет

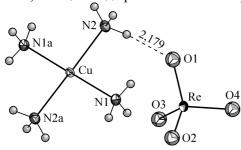
^{*} E-mail: grom@che.nsk.su

 $T\ a\ б\ л\ и\ ц\ a\quad 1$ Кристаллографические характеристики комплексов [M(NH $_3$) $_4$](ReO $_4$) $_2$, где M = Cu, Pt

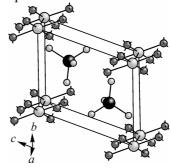
Данные	[Cu(NH ₃) ₄](ReO ₄) ₂ , наст. работа	[Pt(NH ₃) ₄](ReO ₄) ₂ [1]		
Бругто-формула	$CuH_{12}N_4O_8Re_2$	$H_{12}N_4O_8PtRe_2$		
<i>T</i> , K	150	298		
a,b,c, Å	6,5167(3), 6,7790(3), 7,4627(3)	5,1847(6), 7,7397(8), 7,9540(9)		
α, β, γ, град.	67,336(1), 80,004(1), 70,687(1)	69,531(3), 79,656(3), 77,649(3)		
V , $\mathring{\mathbb{A}}^3$	286,70(2)	290,2(4)		
Пространственная группа	<i>P</i> -1	<i>P</i> -1		
Z	1	1		
Молекулярный вес, г/моль	632,08	763,63		
$d_{\rm выч}$, г/см ³	3,661	4,369		
M—N _{cp} , Å	2,027(3)	2,047(4)		
Re—O _{cp} , Å	1,728(3)	1,724(4)		
Re—Re _{cp} , Å	4,2527(2)	4,2857(3)		
∠O—Re—О _{ср} , град.	109,5(1)	109,5(2)		
∠N1—Cu1—N2, град.	88,0(1)	89,1(2)		

Таблица 2 Координаты и эквивалентные тепловые параметры атомов в кристаллической структуре $[Cu(NH_3)_4](ReO_4)_2$

Атом	x/a	y/b	z/c	$U_{\scriptscriptstyle m ЭKB}$, Å 2	Атом	x/a	y/b	z/c	$U_{\scriptscriptstyle m 9KB}$, Å 2
Re	0,59293(2)	0,35048(2)	0,28349(2)	0,01028(6)	N2	0,2205(5)	0,0740(6)	0,1049(5)	0,0154(5)
Cu	0	0	0	0,0101(1)	H1A	-0,019(8)	-0.182(8)	0,359(7)	0,011(10)
01	0,5852(5)	0,6187(4)	0,2573(4)	0,0191(5)	H2A	0,273(8)	0,175(9)	0,024(7)	0,015(11)
O2	0,3364(4)	0,3156(5)	0,3481(4)	0,0203(5)	H1B	0,062(11)	-0,354(11)	0,270(9)	0,037(16)
O3	0,6918(5)	0,2987(5)	0,0704(4)	0,0229(6)	Н2В	0,176(8)	0,128(8)	0,186(7)	0,010(10)
O4	0,7710(5)	0,1614(5)	0,4596(4)	0,0214(5)	Н1С	-0,155(9)	-0,255(9)	0,289(8)	0,022(13)
N1	-0.0313(5)	-0,2261(5)	0,2690(4)	0,0136(5)	Н2С	0,338(13)	-0.060(13)	0,154(12)	0,06(2)

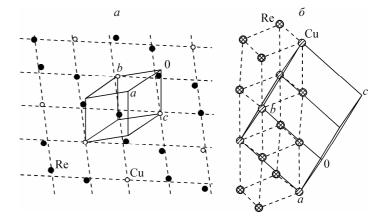

Таблица 3 Основные межатомные расстояния d, $\mathring{\rm A}$ и валентные углы ω , град. ∂ ля [Cu(NH₃)₄](ReO₄)₂

Расстояние	d	Расстояние	d	Валентный угол	ω	Валентный угол	ω
	1,725(3) 1,729(2)	Cu—N2	2,025(3)	O1—Re—O2 O1—Re—O3 O1—Re—O4	110,70(15) 108,73(13)	O2—Re—O4 O3—Re—O4	


проиндицирована по данным исследования монокристалла, что свидетельствует об однофазности продукта.

Строение структурных единиц $[Cu(NH_3)_4](ReO_4)_2$ с нумерацией атомов и эллипсоидами тепловых колебаний показано на рис. 1. Атом Cu находится в центре симметрии и координирует четыре атома N, расположенных по вершинам квадрата (среднее значение расстояний Cu—N 2,027 Å). В анионах расстояния Re—O лежат в интервале 1,722—1,737 Å, валентные углы O— Re—O отклоняются от тетраэдрических (109,5°) не более чем на 2,6°. В структуре комплексные

ионы связаны между собой водородными связями N—H...O, кратчайшая из которых 2,179 Å (см. рис. 1). Общий вид кристаллической структуры показан на рис. 2.



 $Puc.\ 1.$ Фрагмент кристаллической структуры $[Cu(NH_3)_4](ReO_4)_2$ с нумерацией атомов. Показаны эллипсоиды тепловых колебаний и водородная связь N—H...O

Puc. 2. Элементарная ячейка $[Cu(NH_3)_4] \times (ReO_4)_2$. Атомы водорода не показаны

 $Puc.\ 3.\ Псевдогексагональный слой, образованный атомами металлов в структуре <math>[Cu(NH_3)_4](ReO_4)_2$ — a, взаимосвязь трансляционной подрешетки с элементарной ячейкой — δ

Мотив построения кристаллической структуры был определен по методике выделения трансляционных подрешеток [6], согласно которой детерминант матрицы, составленной из индексов наиболее интенсивных отражений, должен быть равным числу тяжелых фрагментов ($N_{\text{Т}\Phi}$) в ячейке. Формульная единица изученной фазы содержит 3 таких фрагмента (2 аниона и 1 катион). Анализ теоретической дифрактограммы для $N_{\text{T}\Phi}=3$ показал, что наиболее симметричная подрешетка может быть выделена при использовании следующей тройки отражений от кристаллографических плоскостей (1 1 0), (0 1 –1) и (0 –2 –1). Векторы трансляционной подрешетки: $a_{\text{K}}=a$, $b_{\text{K}}=-a/3+b/3-2c/3$, $c_{\text{K}}=a/3-b/3-c/3$. Значения параметров подъячейки: $a_{\text{K}}=6,52$, $b_{\text{K}}=5,14$, $c_{\text{K}}=3,90$ Å, $\alpha_{\text{K}}=69,49$, $\beta_{\text{K}}=75,25$, $\gamma_{\text{K}}=116,44^{\circ}$ показывают, что ее условно можно считать псевдогексагональной ($a_{\text{K}}\approx b_{\text{K}}$, $\alpha_{\text{K}}\approx \beta_{\text{K}}\approx 90^{\circ}$, $\gamma_{\text{K}}\approx 120^{\circ}$). Псевдоось 6-го порядка должна совпадать с вектором c_{K} . Действительно, если обратиться к структуре, то в указанном направлении можно выделить псевдогексагональные слои, образованные атомами металлов (рис. 3, a). Такие слои повторяются через $c_{\text{K}}=3,90$ Å (см. рис. 3, δ).

Работа выполнена при поддержке Интеграционного проекта ОХНМ 2006—2008.

СПИСОК ЛИТЕРАТУРЫ

- 1. Корольков И.В., Задесенец А.В., Громилов С.А. и др. // Журн. структур. химии. 2006. 47, № 3. С. 503-511.
- 2. Задесенец А.В. Синтез и физико-химическое исследование комплексных солей предшественников ультрадисперсных металлических порошков, содержащих Pt, Pd и некоторые неблагородные металлы: Автореф. дис. ... к.х.н. ИНХ СО РАН: Новосибирск, 2008.
- 3. Задесенец А.В., Храненко С.П., Шубин Ю.В. и др. // Координац. химия. 2006. 32, № 5. С. 389 394.
- 4. Rochon F.D., Kong P.C., Melanson R. // Acta Crystallogr. C. 1990. **46**. P. 8 10.

- 5. Bruker AXS Inc. (2004). APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11) and SHELXTL (Version 6.12). Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.
- 6. Борисов С.В. // Журн. структур. химии. 1986. 27, № 3. С. 164 167.