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A model is introduced for the conductivity of carbon-nanotube polymer composites based 
upon percolation theory and fractals. These types of polymer composites have been developed 
in the recent years, and experimental data on their percolation threshold is available. We con-
structed a fractal space with the aim of the generalized Mandelbrot-Given curve and used the 
experimental critical exponent of conductivity to calculate the parameters of such a curve. Fi-
nally, the moments of the current distribution function are estimated, and the effect of the criti-
cal exponent on this function is investigated. 
 
K e y w o r d s: percolation theory, fractal, Mandelbrot-Given curve, carbon nanotube compos-
ites. 

1. INTRODUCTION 

Carbon nanotubes (CNTs) [ 1 ] have unique properties that make them attractive systems for fun-
damental scientific studies and a wide range of applications [ 2—4 ]. Carbon nanotubes are excellent 
electrical conductors [ 5 ] with current densities of up to 1011 A �m–2, and have very high thermal con-
ductivities [ 6 ]. Many of these properties can be best exploited by incorporating the nanotubes into 
some form of matrix. The preparation of nanotubes containing composite materials is now a rapidly 
growing subject [ 7, 8 ]. Multiple applications are expected for nanocomposite materials and therefore 
many research works are currently devoted to their incorporation into a metal, ceramic or, more com-
monly, polymer matrix. The composites are generally prepared by mixing the desired quantity of sin-
gle- or multi-walled carbon nanotubes (SWCNT or MWCNT) with the matrix, which is either dis-
solved or in suspension in a liquid medium, before further treatments. One of the most important prop-
erties of nanocomposite materials is conductivity, and many researches work on electrical percolation 
of carbon nanotubes in polymer composites [ 9 ]. Percolation threshold was experimentally measured 
for many types of carbon nanotubes and polymer matrices. In this paper, we introduce a model based 
on percolation theory in fractal space for predicting electrical behavior of carbon nanotube-polymer 
composites (CNTCs). 

Percolation processes were first developed by Flory (1941) and Stockmayer (1943) to describe 
how small branching molecules react and form very large macromolecules [ 10 ]. In 1957, Broadbent 
and Hammersley introduced percolation theory as a stochastic way for modeling the flow of fluid or 
gas through a porous medium with small channels that may or may not let fluid or gas pass [ 11 ]. The 
terms fluid and medium were viewed as totally general: a fluid can be liquid, vapor, heat flux, electric 
current, infection, a solar system, and so on. The medium can be the pore space of a rock, an array of 
trees, or the universe. We can define percolation theory as a general mathematical theory of connec-
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tivity and transport in geometrically complex systems [ 12 ]. The remarkable thing is that many results 
can often be represented in a small number of simple algebraic relationships. 

Percolation theory is classified into two types: site percolation and bond percolation. In the first 
type, we have an infinite lattice of sites that may be occupied with the probability p or unoccupied 
with the probability 1-p. In the other type, an infinite lattice of bonds exists, and each bond may be 
closed with the probability p and open with 1-p. A set of sites (or bonds) connected to each other 
makes a cluster, and in a lattice, one can find clusters different in shape and size (lattice animals). It is 
clear that if p increases, the mean cluster size grows, and in a particular probability we envisage an 
infinite spanning cluster that connected two sides of the lattice (percolation done). This particular 
probability is the phase transition threshold of a system and it was introduced as the percolation 
threshold pc. This quantity relates only on the geometry of the lattice, and it was calculated for many 
lattices (some by exact calculations and others by computer simulation) [ 10, 13 ]. 

It is very important that we attend to the difference between the diffusion process and the percola-
tion process. In the first case, fluid particles decide where to go in the medium, but in the second case, 
the topology of the medium dictates the paths of particles. The topological properties of percolation 
networks are characterized by several quantities, and the effective conductivity g(p) is affected by 
these quantities. The value of each percolation quantity for any p depends on the microscopic details 
of the system, but near the percolation threshold most of these quantities obey scaling laws that are 
largely insensitive to the network structure. For the effective conductivity near pc we have the follow-
ing scaling law: 
 ( ) ( ) .cg p p p �� �  (1) 

The exponent � is one of the transport exponents in percolating systems, and it is almost univer-
sal. It means that � has no relation to the microscopic details of the system and depends only on the 
dimensionality of the system. 

It is not easy to obtain any exact analytical results for cluster properties, and much of our knowl-
edge comes from complex numerical calculations. In these cases, it is very useful to invent a simple 
mathematical model on which we can make analytical calculations. It was clear that the geometry of 
infinite cluster at pc was fractal [ 14 ]. Benoit Mandelbrot introduced fractal geometry as a unifying 
description of natural phenomena that are not uniform, but still obey simple power laws of the form 
 .DM L�  (2) 

D is the non-integer dimension and L is the linear size of the system. Fractal dimensions describe 
a subset of cluster sites (or bonds) necessary for calculating different cluster properties. The formal 
mathematical definition of a fractal was given by Benoit Mandelbrot. It says that a fractal is a set for 
which the Hausdorff Besicovich dimension strictly exceeds the topological dimension [ 14 ]. However, 
this is a very abstract definition. Generally, we can define a fractal as a rough or fragmented geometric 
shape that can be subdivided into parts, each of which is (at least approximately) a reduced-size copy 
of the whole. Fractals are generally self-similar and scale-independent.  

MODEL 

A calculation of the critical exponent in equation (1) shows that there is no distinction between 
different types of two-dimensional lattices, such as square, triangular or honeycomb lattice. The result 
remains in force for d-dimensional lattices. In addition, bond and site percolation have the same expo-
nent. All evidences suggest that the critical exponent depends only on the dimensionality of the lattice, 
and they are universal [ 10 ]. Critical exponents were exactly calculated for the Bethe lattice, in which 
each site is connected to z closest neighbors in a way that no closed loops are possible. In such a lat-
tice, we have pc = (z – 1)–1 and � = 3. The value of the critical exponent obtained from the Bethe lattice 
is the limiting case when the dimensionality of the system approaches to infinity. The accurate studies 
show that the Bethe lattice critical exponent value is exact at d � 6, but in less dimensions it is identi-
fied with an expansion factor (�) as follows: 
 3 (5 / 21).� � � �  (3) 
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Fig. 1. Mandelbrot-Given curve generation for b = 3 

 
On the other hand, if we suppose that the geome-

try of the infinite cluster at pc is fractal (so the subsets 
of this cluster are fractal), then it is possible to deter-
mine the fractal dimension of such a cluster (and its 
subsets) in terms of �  

 4 (10 / 21),D � � �  (4) 
 2 ( / 21),BD � 	 �  (5) 
 min 2 ( / 6),D � � �  (6) 
 max 2 ( / 42).D � � �  (7) 

In the above-mentioned equations, D, DB, Dmin, and Dmax are the fractal dimensions of the infinite 
cluster, backbone, minimum path (chemical distance), and maximum self-avoiding path respectively. 
The backbone is a set of clusters connected to each other by single bonds, and it connects the opposite 
edges of the system. It means that there is practically only one chain of bonds in the infinite cluster, 
which connects two sides. One can find the shortest way in the backbone, it is the minimum path. 
Also, the longest way in the backbone is called the maximum self-avoiding path.  

With a close look at relation (3) between the critical exponent and the expansion factor, and rela-
tions (4 to 7) between the fractal dimensions and the expansion factor, we expect a direct relation be-
tween the fractal dimensions and the critical exponents as follows: 
 2 2,D � � �  (8) 
 (13 ) / 5,BD � � �  (9) 
 min (7 1) /10,D � � �  (10) 
 max ( 17) /10.D � � 	  (11) 

Now we can construct a fractal space and expand our system in this environment. Mandelbrot and 
Given proposed the recursive construction (Fig. 1). The construction begins with a straight segment of 
unit length replaced by eight segments at each iteration [ 15 ]. 

The length scale changes by a factor b called the generalized rescale factor. The generalized 
Mandelbrot-Given curve (GMGC) has L1 singly connected bonds, L2 + L3 bonds in the blob (with 
L2 
 L3), and L4 dangling bonds, and they are related to fractal dimensions  
 1 2 3 4log( ) log ,D L L L L b� 	 	 	  (12) 
 1 2 3log( ) log ,BD L L L b� 	 	  (13) 
 min 1 2log( ) log ,D L L b� 	  (14) 
 max 1 3log( ) log .D L L b� 	  (15) 

A simple calculation shows the fractal dimensions ability to explain the GMGC parameters (L1 to 
L4) 
 max min

1 ,BD D DL b b b� � 	  (16) 

 max
2 ,B DDL b b� �  (17) 

 min
3 ,BD DL b b� �  (18) 

 4 .BDDL b b� �  (19) 
In CNTC, we can propose a network of conductive particles that are distributed in a nonconduc-

tive medium, and also we can study the distribution of these particles with the aim of a distribution 
function. It is often convenient to calculate the moments of the distribution function. The distribution 
of current in a random network is multifractal and therefore 
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In the equation, Mq(L), Ij, I, and �(q) are the qth moment of the current distribution function, cur-
rent through the j bond, total current, and the multifractal exponent respectively. The concept of multi-
fractality implies that there is no linear relation between �(q) and q. 

If it is supposed that the network of CNTCs is a random network, which is a necessary assump-
tion for applying the percolation theory, and this network has a structure of the GMGC type, we will 
be able to predict the moments of the current distribution function. Blumenfeld et al. (1986) found that 
the multifractal exponent for the current distribution in such a curve is given by 

 
2 2 2

1 2 3 2 33 2log[ ( ) / ( ) ]
( ) .

log

q q qL L L L L L L
q

b
	 	 	

� �  (21) 

Our model is based on calculating the GMGC parameters with respect to the fractal dimensions of 
an infinite cluster in a CNTC matrix (eqs. 16—19), and then it applies these parameters for predicting 
�(q) (Eq. 21). In order to compute the fractal dimensions, the experimental results for the critical ex-
ponent are applied (Eqs. 8—11). 

RESULTS AND DISCUSSION  

There is one point about dangling bonds, and it is their role in limitation of the model. It is clear 
that the upper limit for our model is the Bethe lattice, in which we have infinite dimensions and � = 3. 
On the other hand, a calculation of dangling bonds in GMGC shows us the lower limit of 23/11 for the 
model 

 23 3.
11


 � 
  (22) 

The experimental critical exponents for some composites in the above area are collected in Ta-
ble 1 [ 16—24 ]. 
 

T a b l e  1  

Experimental data for pc and �  

N Matrix Filler Aspect  
ratio 

pc  
(vol. %) � Ref. N Matrix Filler Aspect  

ratio 
pc  

(vol. %) � Ref. 

1 PANI SWCNT — 0.3 2.1 [ 19 ]   6 PAT MWCNT >200 12 2.6 [ 20 ]
2 PE SWCNT — 0.25 2.2 [ 22 ]   7 Epoxy SWCNT 400 0.005 2.7 [ 16 ]
3 PMMA MWCNT — 0.2 2.3 [ 23 ]   8 PC SWCNT — 0.1 2.8 [ 21 ]
4 Epoxy SWCNT — 1 2.4 [ 18 ]   9 Epoxy MWCNT 100 0.6 2.9 [ 17 ]
5 — — — — 2.5 — 10 PU MWCNT >100 1 
3 [ 24 ]

 
SWCNT = single wall carbon nanotube, MWCNT = multi wall carbon nanotube, PANI = polyaniline, PE =  
= polyethylene, PMMA = polymethyl methacrylate, PAT = polyhexadecyl thiophene, PC = polycarbonate, PU =  
= polyurethane. 
 

T a b l e  2  

Moment exponents of the current distribution function 

� �(0) �(1) �(2) �(3) �(4) � �(0) �(1) �(2) �(3) �(4) 

2.1 2.18 1.178618 0.79954 0.63821 0.557954 2.6 2.08 1.672996 1.593418 1.565137 1.551144
2.2 2.16 1.289696 1.008681 0.897399 0.843216 2.7 2.06 1.758525 1.705584 1.686891 1.677518
2.3 2.14 1.393425 1.184085 1.104932 1.066608 2.8 2.04 1.841249 1.809778 1.79869 1.793047
2.4 2.12 1.491206 1.33616 1.279285 1.251671 2.9 2.02 1.921616 1.907527 1.902557 1.899988
2.5 2.1 1.584115 1.471227 1.430622 1.410751 3 2 � � � � 

 



M. MONAJJEMI, H. BAHERI, F. MOLLAAMIN  64 

Fig. 2. Compare the effect of � on the current distribution in  
                                             CNTC 

 
The exponent of the distribution function �(q) was 

calculated for several moments (Table 2). It is seen that 
the exponent for the zeroth moment of the distribution 
function is equal to the backbone fractal dimension, as 
expected. With deliberation on �(1), it will be clear that 
the model predict a logical relation between the average 

current and conductivity and it seems that the sensitivity of a system increases with �. Also �(2) is the 
noise exponent and it shows the fluctuation around the average current. �(3) and �(4) are exponents 
of the skewness and kurtosis of the distribution function. They are the ways to describe the shape of 
the distribution function: if the skewness is nonzero, the function skews to one side, and the kurtosis 
describes the flatness of the function.  

The effect of � on the first moment of distribution function is illustrated in Fig. 2. 
With respect to the current distribution function, one can compute the potential energy of elec-

trons in the CNTC matrix, since we can simulate the temperature effect on the conductivity. With such 
a simulation we will be able to propose CNTCs with semiconducting properties. 
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