ОБЗОРЫ И РЕЦЕНЗИИ

ЦЕННАЯ КНИГА ПО НЕДРЕВЕСНЫМ ЛЕСНЫМ ПРОДУКТАМ

Тагильцев Ю. Г., Колесникова Р. Д. Недревесные лесные продукты Дальнего Востока России (десятилетия труда и вдохновения). К 75-летию Дальневосточного научно-исследовательского института лесного хозяйства. Хабаровск: ФБУ «ДальНИИЛХ», 2014. 522 с.

Книга «Недревесные лесные продукты Дальнего Востока России» написана известными дальневосточными учеными Ю. Г. Тагильцевым и Р. Д. Колесниковой, работающими в Дальневосточном научно-исследоваинституте лесного тельском хозяйства (ДальНИИЛХ, Хабаровск), и издана в 2014 г. к 75-летнему юбилею института. Она ценна тем, что авторы обобщили результаты полувековых исследований по подсочке хвойных и лиственных пород, по недревесным, пищевым и лекарственным лесным ресурсам. В ней подведены итоги разработки технологий исследования биологически активных веществ лесных растений Дальнего Востока, а также изложены результаты поиска путей использования получаемых продуктов в различных сферах (лесное и сельское хозяйство, медицина, пищевая отрасль и др.).

Информация, представленная в книге, безусловно, имеет большую ценность в связи с проблемой организации комплексного многоцелевого и устойчивого лесопользования, которая уже много лет стоит перед лесной отраслью страны. Одной из преград к переходу на комплексное и рациональное использование всех лесных ресурсов является отсутствие необходимых данных по недревесным лесным продуктам дальневосточной тайги.

Большую часть книги занимают два первых раздела. В первом разделе охарактеризованы оптимальные технологии подсочки ели аянской (*Picea ajanensis* (Lindl. et Gord.) *Fisch. ex Carr.*), пихты белокорой (*Abies nephrolepis* (Trautv.) Maxim.), лиственницы даурской (*Larix dahurica* Turcz. et Trautv.) и кедра корейского (*Pinus koraiensis* Siebold et Zucc.), разработанные на большом фактичес-

ком материале. Предложены методические рекомендации по подсочке ели аянской без химического воздействия, а также нормативные показатели для расчета экономической эффективности подсочки лиственничных насаждений. Исследованы: смолопродуктивность еловых и лиственничных древостоев Хабаровского края; смоляные вместилища у лиственниц даурской и амурской (Larix amurensis В. Kolesn.); химический состав терпентинного масла живицы лиственницы даурской (Гмелина); химический состав живиц елей аянской и корейской (Picea koraiensis Nakai), изученный совместно с сотрудниками Института органической химии СО РАН. При подсочке лиственницы даурской и ели аянской испытано свыше 10 химических и биологических стимуляторов смолообразования и смоловыделения, выбраны наиболее перспективные.

Во втором разделе «Эфирные масла, флорентинные воды, водомасляные продукты» отражены не менее значимые для перехода на комплексное многоцелевое лесопользование результаты научно-исследовательской работы. Для каждой породы приведены основные результаты изучения. Изучены смолоносные системы ели аянской и даурской; содержание (выход) эфирного масла из их коры и древесной зелени; качественный и количественный состав эфирных масел; разработан и запатентован способ получения эфирного масла из коры хвойных растений. Для пихты почкочешуйной (белокорой) разработан и запатентован способ получения хвойного эфирного масла. Аналогичные результаты получены также по пихтам: сахалинской (Abies sachalinensis Fr. Schmidt), Майра (A. mayriana Miyabe et Kudo) и цельнолистной (*A. holophylla* Maxim.). Не менее существенные результаты получены по лиственнице даурской, сосне корейской (кедру корейскому), сосне низкой (кедровому стланику *Pinus pumila* (Pall.) Regel), сосне обыкновенной (*P. sylvestris* L.), можжевельнику (*Juniperus* sp.) и другим видам.

Оригинальные результаты получены и по лиственным породам. Разработана технология получения водомасляного березового продукта и проведены анализы макро- и микроэлементов водомасляных продуктов из берез даурской (Betula davurica Pall.) и плосколистной (В. platyphylla Sukacz.). Изучены физико-химические характеристики березового сока, содержание в нем макро- и микроэлементов, сахаристость сока берез плосколистной, ребристой (B. costata Trautv.) и даурской. Впервые разработан и запатентован способ получения водомасляного продукта из древесной зелени ореха маньчжурского (Juglans mandshurica Maxim.), исследован выход водомасляного продукта; выявлено стимулирующее действие его на проращивание некоторых семян хвойных и лиственных растений.

Не остались без внимания кустарники и лианы. Изучен выход эфирных масел практически из всех видов багульников (*Ledum* sp.), произрастающих на Дальнем Востоке, и разработана оптимальная технология получения багульникового эфирного масла и багульниковой флорентинной воды, выбраны оптимальные параметры перегонки. Способ получения запатентован.

По лимоннику китайскому (Schisandra chinensis (Turcz.) Baill.) определено содержание эфирных масел в лианах, листьях, плодах и отходах производства его сока, даны физико-химические характеристики лимонниковых эфирных масел и их химический состав, разработаны технические условия на масло эфирное лимонниковое.

В книге нашли отражение и другие аспекты научно-исследовательской и организационной работы, в частности участие в разработке международных проектов. Так, большое внимание уделено изучению возможностей получения биологически активных продуктов из лесных растений первого модель-

ного леса «Гассинский». Установлено, что использование отходов расчетной лесосеки только на 50 % для производства масел может давать ежегодно 60 т елово-пихтового, 9 — пихтового и 2 т лиственничного масел.

Авторы рассказали об участии многих сотрудников ДальНИИЛХ в организации и проведении исследований по рассмотренным направлениям, в поле их внимания оказались и многие сотрудники из других организаций лесного хозяйства, научно-исследовательских и учебных институтов, оказавших содействие в организации и проведении исследований на разных этапах сбора, обработки и анализа исходного материала.

В других разделах книги говорится о темах научно-исследовательских работ, выполненных под руководством авторов; местах отбора растительного сырья, видах лесных растений и исследуемых продуктов; нормативно-технической документации на биологически активные продукты из хвойных и лиственных растений, разработанных в ДальНИИЛХ; о проведении исследований по договорам о творческом содружестве с другими организациями; о семинарах и конференциях, проводимых институтом по лесным биологическим активным ресурсам, и материалах трех международных конференций, организованных ДальНИИЛХ и посвященных лесным биологическим ресурсам. Дан перечень малоизученных и неизученных лесных растений, представляющих научную и практическую ценность для исследования и получения биологически активных веществ. В отдельном разделе перечислены публикации представителей научной школы по изучению недревесных лесных продуктов, сложившейся в институте.

Книга хорошо оформлена, в твердой обложке, снабжена многими добротными рисунками, цветными фотографиями, помещенными в приложении. Это действительно ценное издание, достойный подарок к юбилею ДальНИИЛХ. Руководители научной школы позаботились о научной смене. Они передают эстафету: «Теперь дорогу вам — молодым!» и с легкой грустью искренне пишут во введении: «Все когда-то заканчивается, заканчивается и наш творческий путь.

Мы пережили все: радость творчества, озарение маленьких научных открытий, радость редких наград и похвал, перекосы уродливой перестройки, но при этом сохранили преданность и верность ее Величеству – Науке».

Книга, по существу, представляет отчет научной школы по изучению недревесных продуктов дальневосточного леса и в то же время показывает тесную связь научных разработок этой школы с решением практических задач комплексного использования лесных ресурсов, о чем говорят работы сложившегося коллектива, оцененные патентами, а также внедренные в лесное и сельское хозяйство, медицину, пищевую промышленность. В связи с этим возникает вопрос о

критериях оценки итогов научной работы, среди которых, на наш взгляд, должны иметь преобладающий вес разработки, направленные на решение практических задач, в том числе и регионального уровня.

Ю. И. Манько,

главный научный сотрудник Биологопочвенного института ДВО РАН, доктор биологических наук, профессор

Б. С. Петропавловский,

заведующий лабораторией экологии растительного покрова Ботанического садаинститута ДВО РАН, доктор биологических наук, профессор