УДК 532.135

ОБТЕКАНИЕ ПЛОСКОГО КЛИНА ПОТОКОМ НЕСЖИМАЕМОЙ ПОЛИМЕРНОЙ ЖИДКОСТИ

А. М. Блохин, Р. Е. Семенко

Новосибирский государственный университет, 630090 Новосибирск, Россия Институт математики им. С. Л. Соболева СО РАН, 630090 Новосибирск, Россия E-mails: blokhin@math.nsc.ru, r.semenko@g.nsu.ru

Рассмотрена задача об обтекании плоского бесконечного клина потоком несжимаемой полимерной жидкости, движущимся параллельно плоскости симметрии клина и перпендикулярно его ребру. Показано, что для выполнения условий прилипания на поверхности клина необходимо наличие двух поверхностей сильных разрывов. Исследованы стационарные решения задачи обтекания и показана несимметричность потока относительно оси симметрии клина.

Ключевые слова: полимерная жидкость, плоский клин, стационарное обтекание клина, сильный разрыв.

DOI: 10.15372/PMTF20180105

Введение. Исследование обтекания бесконечного клина с углом при вершине, равным 2a, потоком жидкости является классической задачей механики сплошных сред. Аналогичная задача возникает в случае несжимаемой полимерной жидкости. В данной работе предлагается модель (называемая двухпалубной), в основе которой лежит математическая модель полимерной среды, предложенная в [1].

Основной трудностью, возникающей при исследовании обтекания клина стационарным потоком несжимаемой полимерной жидкости, является обеспечение выполнения условия прилипания полимерной жидкости к твердой поверхности клина. Выполнение этого условия достигается путем введения так называемых поверхностей сильных разрывов (о сильных разрывах в полимерной жидкости см. [2]).

1. Предварительные сведения. Постоянное решение исходной системы уравнений, описывающих движение несжимаемой полимерной жидкости. Следуя [1], сформулируем обобщенную реологическую модель Виноградова — Покровского, описывающую течения несжимаемой вязкоупругой полимерной жидкости. Безразмерные уравнения (процесс обезразмеривания подробно описан в работе [2]) этой математической модели имеют следующий вид:

$$\frac{da_{12}}{dt} - A_1(v_g)_x - A_2(u_y)_y + \tilde{K}_I a_{12} = 0,$$

$$\frac{da_{22}}{dt} - 2a_{12}(v_g)_x - 2A_2(v_g)_y + K_I a_{22} + \beta \|\boldsymbol{\sigma}_2\|^2 = 0.$$

Здесь t — время; u_g , v_g — компоненты вектора скорости \boldsymbol{u} в декартовой системе координат (x,y); p — давление; a_{ij} (i,j=1,2) — компоненты симметрического тензора анизотропии Π второго ранга; σ_1 , σ_2 — столбцы симметрической матрицы,

$$\|\boldsymbol{\sigma}_{i}\|^{2} = (\boldsymbol{\sigma}_{i}, \boldsymbol{\sigma}_{i}), \qquad i = 1, 2,$$

$$\operatorname{div} \Pi = (\operatorname{div} \boldsymbol{\sigma}_{1}, \operatorname{div} \boldsymbol{\sigma}_{2})^{\mathrm{T}},$$

$$K_{I} = W^{-1} + \bar{k}I/3, \qquad \tilde{K}_{I} = K_{I} + \beta I = W^{-1} + \hat{k}I/3,$$

$$I = a_{11} + a_{22}, \qquad \bar{k} = k - \beta, \qquad \hat{k} = \bar{k} + 3\beta,$$

 $k,\ \beta\ (0<\beta<1)$ — феноменологические параметры модели, характеризующие вклады, обусловленные анизотропией (см. [1]); Re = $\rho u_H l/\eta_0$ — число Рейнольдса; $\rho={\rm const}$ — плотность среды; W = $\tau_0 u_H/l$ — число Вайсенберга; $\eta_0,\ \tau_0$ — начальные значения сдвиговой вязкости и времени релаксации; l — характерная длина; u_H — характерная скорость; $A_i={\rm W}^{-1}+a_{ii}\ (i=1,2),$

$$\frac{d}{dt} = \frac{\partial}{\partial t} + (\boldsymbol{u}, \nabla),$$

время t, координаты x,y, компоненты вектора скорости u_g, v_g , давление p отнесены к параметрам $l/u_H, \, l, \, u_H, \, \rho u_H^2$.

Стационарные решения системы (1.1) изучались в [2]. Далее используется постоянное решение уравнений математической модели (1.1):

$$u_g = \hat{u}_g = \text{const}, \qquad v_g = \hat{v}_g = \text{const},$$
 $a_{11} = \hat{a}_{11} = \text{const}, \qquad a_{12} = \hat{a}_{12} = \text{const}, \qquad a_{22} = \hat{a}_{22} = \text{const},$ $p = \hat{p} = \text{const}.$

Для определения постоянных \hat{a}_{11} , \hat{a}_{12} , \hat{a}_{22} имеем следующие соотношения (см. [2]):

$$\tilde{K}_{\hat{I}} = W^{-1} + \frac{\hat{k}}{3} \hat{I} = 0, \qquad \hat{I} = \hat{a}_{11} + \hat{a}_{22} = -\frac{2}{W\hat{k}},
\hat{a}_{22} = -\frac{3}{2W\hat{k}} \pm \sqrt{\left(\frac{3}{2W\hat{k}}\right)^2 - \hat{a}_{12}^2}, \qquad \hat{a}_{11}\hat{a}_{22} = \hat{a}_{12}^2.$$
(1.2)

Вводя величины $\alpha_{ij}=a_{ij}/\operatorname{Re}\ (i,j=1,2),$ из (1.2) получаем

$$\hat{\alpha}_{22} = -\hat{\rho} \pm \sqrt{\hat{\rho}^2 - \hat{\alpha}_{12}^2}, \qquad \hat{\alpha}_{11}\hat{\alpha}_{22} = \hat{\alpha}_{12}^2,$$

$$\hat{\rho} = \frac{3\varkappa^2}{2\hat{k}}, \qquad \varkappa^2 = \frac{1}{W \operatorname{Re}}.$$
(1.3)

Полагая $\hat{k} > 0$, введем угол $-\pi/2 < \hat{\alpha} < \pi/2$, такой что

$$\sin \hat{\alpha} = \hat{\alpha}_{12}/\hat{\rho}, \qquad |\hat{\alpha}_{12}| < \hat{\rho}.$$

Тогда

$$\hat{\alpha}_{22} = \hat{\rho}(\pm \cos \hat{\alpha} - 1). \tag{1.4}$$

Приведем уравнения (1.1) в полярной системе координат (r, φ) $(r \geqslant 0, -\pi < \varphi \leqslant \pi, x = r \cos \varphi, y = r \sin \varphi$ (см. [3])):

$$\operatorname{div} \boldsymbol{u} = u_r + \frac{1}{r} v_{\varphi} + \frac{u}{r} = 0,$$

$$\frac{du}{dt} - \frac{v^2}{r} + p_r = \frac{1}{\operatorname{Re}} \left((a_{rr})_r + \frac{1}{r} (a_{r\varphi})_{\varphi} + \frac{a_{rr} - a_{\varphi\varphi}}{r} \right),$$

$$\frac{dv}{dt} + \frac{uv}{r} + \frac{1}{r} p_{\varphi} = \frac{1}{\operatorname{Re}} \left((a_{r\varphi})_r + \frac{1}{r} (a_{\varphi\varphi})_{\varphi} + \frac{2}{r} a_{r\varphi} \right),$$

$$\frac{da_{rr}}{dt} - 2 \left(A_r u_r + \frac{a_{r\varphi}}{r} u_{\varphi} \right) + K_I a_{rr} + \beta \|\boldsymbol{a}_r\|^2 = 0,$$

$$\frac{da_{\varphi\varphi}}{dt} + 2 \left(\left(\frac{v}{r} - v_r \right) a_{r\varphi} - \frac{1}{r} (u + v_{\varphi}) A_{\varphi} \right) + K_I a_{\varphi\varphi} + \beta \|\boldsymbol{a}_{\varphi}\|^2 = 0,$$

$$\frac{da_{r\varphi}}{dt} + \left(\frac{v}{r} - v_r \right) A_r - \frac{1}{r} A_{\varphi} u_{\varphi} + \tilde{K}_I a_{r\varphi} = 0.$$

$$(1.5)$$

Здесь u, v — компоненты вектора скорости u в полярной системе координат $(r, \varphi); a_{rr}, a_{\varphi\varphi}, a_{r\varphi}$ — компоненты симметрического тензора анизотропии Π ,

$$\mathbf{a}_r = (a_{rr}, a_{r\varphi}), \quad \mathbf{a}_{\varphi} = (a_{r\varphi}, a_{\varphi\varphi}), \quad I = a_{rr} + a_{\varphi\varphi},$$

$$A_r = a_{rr} + \mathbf{W}^{-1}, \quad A_{\varphi} = a_{\varphi\varphi} + \mathbf{W}^{-1}, \quad \frac{d}{dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial r} + \frac{v}{r} \frac{\partial}{\partial \varphi}.$$

Связь между компонентами тензора анизотропии в декартовой и полярной системах координат a_{11}, a_{22}, a_{12} и $a_{rr}, a_{\varphi\varphi}, a_{r\varphi}$ задается формулами Колосова (см., например, [4]):

$$a_{rr} = \frac{a_{11} + a_{22}}{2} + \frac{a_{11} - a_{22}}{2} \cos 2\varphi + a_{12} \sin 2\varphi,$$

$$a_{\varphi\varphi} = \frac{a_{11} + a_{22}}{2} - \frac{a_{11} - a_{22}}{2} \cos 2\varphi - a_{12} \sin 2\varphi,$$

$$a_{r\varphi} = -\frac{a_{11} - a_{22}}{2} \sin 2\varphi + a_{12} \cos 2\varphi.$$
(1.6)

Кроме того,

$$u = u_q \cos \varphi + v_q \sin \varphi, \qquad v = v_q \cos \varphi - u_q \sin \varphi.$$

Приведем также соотношения на сильном разрыве, полученные в [2]:

$$f_{t}[u_{g}] - [u_{g}^{2} + p - \alpha_{1}] + f_{y}[u_{g}v_{g} - \alpha_{12}] = 0,$$

$$f_{t}[v_{g}] - [u_{g}v_{g} - \alpha_{12}] + f_{y}[v_{g}^{2} + p - \alpha_{2}] = 0,$$

$$f_{t}[u_{g}^{2} + \alpha_{1}] - [u_{g}(u_{g}^{2} - \alpha_{1})] + f_{y}[v_{g}(u_{g}^{2} + \alpha_{1}) - 2\alpha_{12}u_{g}] = 0,$$

$$f_{t}[u_{g}v_{g} + \alpha_{12}] - [v_{g}(u_{g}^{2} - \alpha_{1})] + f_{y}[u_{g}(v_{g}^{2} - \alpha_{2})] = 0,$$

$$f_{t}[v_{g}^{2} + \alpha_{2}] - [u_{g}(v_{g}^{2} + \alpha_{2}) - 2\alpha_{12}v_{g}] + f_{y}[v_{g}(v_{g}^{2} - \alpha_{2})] = 0,$$

$$-[\Omega^{(x)}] + f_{y}[\Omega^{(y)}] = 0.$$

$$(1.7)$$

Здесь $\tilde{f}(t,x,y)=f(t,y)-x=0$ — уравнение фронта сильного разрыва в декартовой системе координат; $[F]=F-F_{\infty};\ F,\ F_{\infty}$ — значения величины F справа $(\tilde{f}\to -0)$ и слева $(\tilde{f}\to +0)$ от разрыва,

$$\alpha_i = \frac{A_i}{\text{Re}} = \alpha_{ii} + \varkappa^2, \ i = 1, 2, \quad \Omega^{(x)} = p_x - (\alpha_1)_x - (\alpha_{12})_y, \quad \Omega^{(y)} = p_y - (\alpha_{12})_x - (\alpha_2)_y.$$

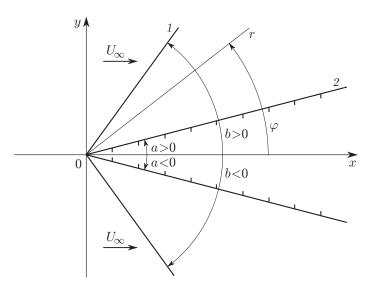


Рис. 1. Схема обтекания клина стационарным потоком полимерной жидкости: 1 — сильный разрыв, 2 — поверхность клина

2. Стационарное обтекание плоского клина потоком несжимаемой полимерной жидкости (двухпалубная модель). Стационарное обтекание плоского клина полимерной жидкостью сначала будем описывать с использованием схемы, подобной схеме для обычной жидкости (см., например, [5]): течение, описываемое постоянным решением системы (1.1), отделяется от течения в окрестности клина с углом при вершине, равным 2a, сильным разрывом (рис. 1). Стационарное решение, описывающее течение в окрестности клина, будем искать в виде

$$a_{rr} = \hat{a}_{rr}(\varphi),$$
 $a_{\varphi\varphi} = \hat{a}_{\varphi\varphi}(\varphi),$ $a_{r\varphi} = \hat{a}_{r\varphi}(\varphi),$ $u = \hat{u}(\varphi),$ $v = \hat{v}(\varphi),$ $p = \hat{p} = \text{const}.$

Из (1.5) следует, что функции $\hat{a}_{rr},\,\hat{a}_{\varphi\varphi},\,\hat{a}_{r\varphi},\,\hat{u},\,\hat{v}$ удовлетворяют соотношениям

$$\hat{v}' + \hat{u} = 0, \qquad \hat{u}' = \hat{v}, \qquad \hat{v}' = d\hat{v}/d\varphi, \qquad \dots,
\hat{K}_{\hat{I}} = 0, \qquad \hat{I} = \hat{a}_{rr} + \hat{a}_{\varphi\varphi} = -3/(W\hat{k}), \qquad \hat{a}'_{rr} = 2\hat{a}_{r\varphi}, \qquad \hat{a}'_{\varphi\varphi} = -2\hat{a}_{r\varphi},
\hat{a}''_{r\varphi} + 4\hat{a}_{r\varphi} = 0, \qquad \hat{a}''_{r\varphi} = d^2\hat{a}_{r\varphi}/d\varphi^2, \qquad \dots,
\hat{a}_{rr}\hat{a}_{\varphi\varphi} = \hat{a}_{r\varphi}^2.$$
(2.1)

При $\varphi = a$ (см. рис. 1) положим

$$\hat{v}(a) = 0, \qquad \hat{u}(a) = 0,$$
 (2.2)

т. е. на твердой поверхности клина выполняются условия прилипания. Из (2.1), (2.2) следует

$$\hat{u}'' + \hat{u} = 0,$$
 $\hat{u}(a) = \hat{u}'(a) = 0,$

т. е.

$$\hat{u}(\varphi) \equiv 0, \qquad \hat{v}(\varphi) \equiv 0.$$
 (2.3)

Из (2.1) также получаем

$$\hat{a}_{r\varphi} = -\frac{3}{2\mathrm{W}\hat{k}}\cos2(\varphi - \hat{\gamma}), \quad \hat{a}_{rr} = -\frac{3}{2\mathrm{W}\hat{k}}\left(1 + \sin2(\varphi - \hat{\gamma})\right), \quad \hat{a}_{\varphi\varphi} = -\frac{3}{2\mathrm{W}\hat{k}}\left(1 - \sin2(\varphi - \hat{\gamma})\right),$$

где $\hat{\gamma}$ — некоторая постоянная, подлежащая определению.

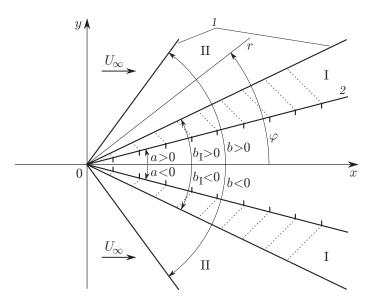


Рис. 2. Двухпалубная модель обтекания клина: 1— сильные разрывы, 2— поверхность клина

Соотношения (2.3) означают, что предложенную выше схему обтекания необходимо модифицировать (рис. 2). Область течения за сильным разрывом разбивается на две подобласти (подобласти I и II), причем в подобласти I выполняются соотношения

$$\hat{u}(\varphi) = \hat{u}_{\mathrm{I}}(\varphi) \equiv 0, \qquad \hat{v}(\varphi) = \hat{v}_{\mathrm{I}}(\varphi) \equiv 0; \tag{2.4}$$

$$\hat{\alpha}_{r\varphi}(\varphi) = \hat{\alpha}_{r\varphi}^{\mathrm{I}}(\varphi) = -\hat{\rho}_{\mathrm{I}}\cos 2(\varphi - \hat{\gamma}_{\mathrm{I}}), \qquad \hat{\alpha}_{r\varphi}^{\mathrm{I}} = \hat{a}_{r\varphi}^{\mathrm{I}}/\operatorname{Re}_{\mathrm{I}},$$

$$\hat{\alpha}_{rr}(\varphi) = \hat{\alpha}_{rr}^{\mathrm{I}}(\varphi) = -\hat{\rho}_{\mathrm{I}}(1 + \sin 2(\varphi - \hat{\gamma}_{\mathrm{I}})), \qquad \hat{\alpha}_{rr}^{\mathrm{I}} = \hat{a}_{rr}^{\mathrm{I}}/\operatorname{Re}_{\mathrm{I}},$$

$$\hat{\alpha}_{\varphi\varphi}(\varphi) = \hat{\alpha}_{\varphi\varphi}^{\mathrm{I}}(\varphi) = -\hat{\rho}_{\mathrm{I}}(1 - \sin 2(\varphi - \hat{\gamma}_{\mathrm{I}})), \qquad \hat{\alpha}_{\varphi\varphi}^{\mathrm{I}} = \hat{a}_{\varphi\varphi\varphi}^{\mathrm{I}}/\operatorname{Re}_{\mathrm{I}},$$

$$(2.5)$$

где

$$\hat{
ho}_{
m I} = rac{3arkappa_{
m I}^2}{2\hat{k}_{
m I}}, \qquad arkappa_{
m I}^2 = rac{1}{{
m W_I\,Re_I}}, \qquad \hat{k}_{
m I} = ar{k}_{
m I} + 3eta_{
m I}, \qquad ar{k}_{
m I} = k_{
m I} - eta_{
m I}$$

(см. формулы (1.3)); $a<\varphi< b_{\rm I}$ при a>0, $b_{\rm I}>0$ и $b_{\rm I}<\varphi< a$ при a<0, $b_{\rm I}<0.$ Постоянную $\hat{\gamma}_{\rm I}$ определим, полагая при $\varphi=a$

$$\hat{\alpha}_{r\varphi}^{\mathbf{I}}(a) = \hat{\alpha}_{rr}^{\mathbf{I}}(a) = 0,$$

т. е.

$$\hat{\gamma}_{\mathbf{I}} = a + \pi/4, \qquad a \neq 0.$$

В подобласти II выполняются соотношения

$$\hat{u}(\varphi) = \hat{u}_{\text{II}}\cos(\varphi - b_{\text{I}}) + \hat{v}_{\text{II}}\sin(\varphi - b_{\text{I}}), \qquad \hat{v}(\varphi) = -\hat{u}_{\text{II}}\sin(\varphi - b_{\text{I}}) + \hat{v}_{\text{II}}\cos(\varphi - b_{\text{I}}); \quad (2.6)$$

$$\hat{\alpha}_{r\varphi}(\varphi) = -\hat{\rho}_{\text{II}}\cos 2(\varphi - \hat{\gamma}_{\text{II}}), \qquad \hat{\alpha}_{rr}(\varphi) = -\hat{\rho}_{\text{II}}(1 + \sin 2(\varphi - \hat{\gamma}_{\text{II}})),$$

$$\hat{\alpha}_{\varphi\varphi}(\varphi) = -\hat{\rho}_{\text{II}}(1 - \sin 2(\varphi - \hat{\gamma}_{\text{II}})).$$

$$(2.7)$$

Здесь

$$\hat{u}_{\mathrm{II}} = \hat{u}(b_{\mathrm{I}} \pm 0), \qquad \hat{v}_{\mathrm{II}} = \hat{v}(b_{\mathrm{I}} \pm 0),$$
 $\hat{\rho}_{\mathrm{II}} = 3\varkappa_{\mathrm{II}}^2/(2\hat{k}_{\mathrm{II}}), \quad b_{\mathrm{I}} < \varphi < b$ при $b_{\mathrm{I}} > 0, \quad b < \varphi < b_{\mathrm{I}}$ при $b_{\mathrm{I}} < 0, \quad b < 0.$

Подобласти I, II и область постоянного решения разделены сильными разрывами $\varphi = b_{\rm I}$ и $\varphi = b$. На этих разрывах выполняются соотношения (1.7), которые в стационарном случае в полярной системе координат принимают следующий вид:

$$[\hat{u}\hat{v} - \hat{\alpha}_{r\varphi}] = 0, \qquad [\hat{v}^2 + \hat{p} - \hat{\alpha}_{\varphi\varphi} - \varkappa^2] = 0,$$

$$[\hat{u}(\hat{u}^2 + \hat{\alpha}_{rr} + \varkappa^2) - 2\hat{u}\hat{\alpha}_{r\varphi}] = 0,$$

$$[\hat{u}(\hat{v}^2 - \hat{\alpha}_{\varphi\varphi} - \varkappa^2)] = 0, \qquad [\hat{v}(\hat{v}^2 - \hat{\alpha}_{\varphi\varphi} - \varkappa^2)] = 0.$$
(2.8)

При $\varphi = b_{\rm I}$ в силу (2.4)–(2.7) из (2.8) получаем

$$\hat{v}_{\text{II}}^{2} = \hat{l}_{\text{II}} + \hat{\rho}_{\text{II}} \sin 2(b_{\text{I}} - \hat{\gamma}_{\text{II}}) = 2\hat{\rho}_{\text{II}} \sin (b_{\text{I}} - \hat{\gamma}_{\text{II}} + \hat{g}_{\text{II}}/2) \cos (b_{\text{I}} - \hat{\gamma}_{\text{II}} - \hat{g}_{\text{II}}/2),$$

$$\hat{u}_{\text{II}}\hat{v}_{\text{II}} = \hat{\rho}_{\text{I}} \sin 2(b_{\text{I}} - a) - \hat{\rho}_{\text{II}} \cos 2(b_{\text{I}} - \hat{\gamma}_{\text{II}}),$$

$$(\hat{u}_{\text{II}}\hat{v}_{\text{II}})^{2} = 2\hat{\rho}_{\text{II}}^{2} - \hat{l}_{\text{II}}^{2} - \hat{\rho}_{\text{II}}^{2} (\sin 2(b_{\text{I}} - \hat{\gamma}_{\text{II}}))^{2} - 2\hat{\rho}_{\text{I}}\hat{\rho}_{\text{II}} \sin 2(b_{\text{I}} - a) \cos 2(b_{\text{I}} - \hat{\gamma}_{\text{II}}),$$

$$\Delta_{\text{I}} = \hat{p}_{\text{I}} - \hat{p}_{\text{II}} = \hat{l}_{\text{I}} - \hat{\rho}_{\text{I}} \cos 2(b_{\text{I}} - a),$$
(2.9)

где

$$\hat{l}_{\rm I} = \varkappa_{\rm I}^2 - \hat{\rho}_{\rm I}, \qquad \hat{l}_{\rm II} = \varkappa_{\rm II}^2 - \hat{\rho}_{\rm II}, \qquad \sin \hat{g}_{\rm II} = \hat{l}_{\rm II}/\hat{\rho}_{\rm II} = (2\hat{k}_{\rm II} - 3)/3,$$
 $\sin \hat{g}_{\rm II} = 2\beta_{\rm II} - 1$ при $\bar{k}_{\rm II} = 0, \quad 0 < \beta_{\rm II} < 1, \quad -\pi/2 < \hat{g}_{\rm II} < \pi/2.$

Из второго и третьего соотношений (2.9) следует

$$\sin 2(b_{\mathrm{I}} - a) = \pm (\hat{\rho}_{\mathrm{II}}/\hat{\rho}_{\mathrm{I}})\cos \hat{q}_{\mathrm{II}}, \qquad a \neq 0. \tag{2.10}$$

Соотношения (2.8) при $\varphi = b$ запишем в виде

$$\hat{u}(b)\hat{v}(b) + \sin b \cos b - \hat{\alpha}_{r\varphi}(b) + \hat{\alpha}_{r\varphi\infty} = 0,$$

$$\Delta_{\text{II}} = \hat{p}_{\text{II}} - \hat{p}_{\infty} = \sin^2 b + \hat{\alpha}_{\varphi\varphi}(b) - \hat{\alpha}_{\varphi\varphi\infty} + \varkappa_{\text{II}}^2 - \varkappa_{\infty}^2 - \hat{v}^2(b),$$

$$\hat{v}(b)(\hat{u}^2(b) + \hat{\alpha}_{rr}(b) + \varkappa_{\text{II}}^2) - 2\hat{u}(b)\hat{\alpha}_{r\varphi}(b) + 2\cos b\hat{\alpha}_{r\varphi\infty} + \sin b(\cos^2 b + \hat{\alpha}_{rr\infty} + \varkappa_{\infty}^2) = 0,$$

$$\hat{v}(b) = -\hat{u}(b) \operatorname{tg} b, \quad \hat{u}(b)((\hat{v}^2(b) + \hat{\alpha}_{\varphi\varphi}(b) - \varkappa_{\text{II}}^2) - \cos b(\sin^2 b - \hat{\alpha}_{\varphi\varphi\infty} - \varkappa_{\infty}^2) = 0.$$
(2.11)

Здесь согласно (2.6), (2.7), (1.3), (1.4) и формулам Колосова (1.6)

$$\hat{u}_{\infty} = \cos b, \qquad \hat{v}_{\infty} = -\sin b,$$

$$\hat{\alpha}_{r\varphi\infty} = \hat{\rho}_{\infty} \sin (2b + \hat{\alpha}_{\infty}), \qquad \hat{\rho}_{\infty} = 3\varkappa_{\infty}^2/(2\hat{k}_{\infty}), \qquad \varkappa_{\infty}^2 = (W_{\infty} \operatorname{Re}_{\infty})^{-1},$$

$$\hat{\alpha}_{rr\infty} = -\hat{\rho}_{\infty}(1 + \cos (2b + \hat{\alpha}_{\infty})), \qquad \hat{\alpha}_{\varphi\varphi\infty} = -\hat{\rho}_{\infty}(1 - \cos (2b + \hat{\alpha}_{\infty})),$$

$$\sin \hat{\alpha}_{\infty} = \hat{\alpha}_{12\infty}/\hat{\rho}_{\infty}, \qquad \hat{\alpha}_{r\varphi}(b) = -\hat{\rho}_{II} \cos 2(b - \hat{\gamma}_{II}),$$

$$\hat{\alpha}_{rr}(b) = -\hat{\rho}_{II}(1 + \sin 2(b - \hat{\gamma}_{II})), \qquad \hat{\alpha}_{\varphi\varphi}(b) = -\hat{\rho}_{II}(1 - \sin 2(b - \hat{\gamma}_{II})),$$

индекс " ∞ " соответствует решению перед разрывом $\varphi = b$. Заметим, что для определенности в формуле (1.4) выбран знак "+".

Замечание 2.1. В качестве характерной скорости u_H выбрана величина U_{∞} (см. рис. 2). Заметим, что, поскольку параметр \varkappa^2 (см. (1.3)) не зависит от характерной длины l, в качестве l можно выбрать любое размерное значение.

С учетом (2.11) из соотношения

$$\hat{v}(b) = -\hat{u}(b) \operatorname{tg} b$$

и формул (2.6) следует

$$\hat{v}_{\rm II} = -\hat{u}_{\rm II} \operatorname{tg} b_{\rm I}. \tag{2.12}$$

С учетом (2.12) из (2.6) получаем

$$\begin{split} \hat{u}(\varphi) &= -\frac{\hat{u}_{\text{II}}\cos\varphi}{\sin b_{\text{I}}}, \qquad \hat{v}(\varphi) = \frac{\hat{v}_{\text{II}}\sin\varphi}{\sin b_{\text{I}}}, \\ b_{\text{I}} &< \varphi < b \text{ при } b_{\text{I}} > 0, \ b > 0, \qquad b < \varphi < b_{\text{I}} \text{ при } b_{\text{I}} < 0, \ b < 0. \end{split}$$

Записывая равенство (2.12) в виде

$$\hat{v}_{\text{II}}^2 \cos b_{\text{I}} + \hat{u}_{\text{II}} \hat{v}_{\text{II}} \sin b_{\text{I}} = 0, \tag{2.13}$$

с учетом (2.9), (2.10) из (2.13) получаем (в формуле (2.10) выбран знак "+" (a>0))

$$\sin(2\hat{\gamma}_{II} - b_{I}) = \sin(b_{I} + \hat{g}_{II}),$$

т. е.

$$\cos(\hat{\gamma}_{II} + \hat{g}_{II}/2)\sin(\hat{\gamma}_{II} - b_I - \hat{g}_{II}/2) = 0. \tag{2.14}$$

Поскольку $\hat{v}_{\rm II} \neq 0 \; (\hat{v}_{\rm II} < 0)$, из (2.14) следует

$$\hat{\gamma}_{\rm II} = \pi/2 - \hat{g}_{\rm II}/2. \tag{2.15}$$

В силу (2.15) из (2.9) получаем

$$\hat{v}_{\text{II}}^2 = -2\hat{\rho}_{\text{II}}\sin b_{\text{I}}\cos(b_{\text{I}} + \hat{g}_{\text{II}}), \qquad b_{\text{I}} > 0, \qquad b_{\text{I}} + \hat{g}_{\text{II}} > \pi/2.$$

Выбрав в (2.10) знак "—" (a < 0), из (2.13) находим

$$\sin(b_{\rm I} - 2\hat{\gamma}_{\rm II}) = \sin(b_{\rm I} - \hat{g}_{\rm II}),$$

т. е.

$$\cos(b_{\rm I} - \hat{\gamma}_{\rm II} - \hat{g}_{\rm II}/2)\sin(\hat{g}_{\rm II}/2 - \hat{\gamma}_{\rm II}) = 0.$$

Так как $\hat{v}_{II} \neq 0 \ (\hat{v}_{II} > 0)$, то

$$\hat{\gamma}_{\rm II} = \hat{g}_{\rm II}/2,$$

$$\hat{v}_{\rm II}^2 = -2\hat{\rho}_{\rm II}\sin b_{\rm I}\cos(b_{\rm I} - \hat{g}_{\rm II}), \qquad b_{\rm I} < 0, \qquad b_{\rm I} - \hat{g}_{\rm II} < -\pi/2.$$

Соотношения (2.11) представим в виде

$$\Delta_{\rm II} = \hat{p} - \hat{p}_{\infty} = (1 + \mu_{\rm II}^{-1})(\sin^2 b - \hat{l}_{\infty} - \hat{\rho}_{\infty}\cos(2b + \hat{\alpha}_{\infty})),$$
$$(\mu_{\rm II}^2 - 1)\sin b\cos b = \hat{\rho}_{\infty}\sin(2b + \hat{\alpha}_{\infty}) + \hat{\rho}_{\rm II}\cos 2(b - \hat{\gamma}_{\rm II}),$$

$$\mu_{\rm II}(\mu_{\rm II}^2 \sin^2 b - \hat{l}_{\rm II} - \hat{\rho}_{\rm II} \sin 2(b - \hat{\gamma}_{\rm II})) + (\sin^2 b - \hat{l}_{\infty} - \hat{\rho}_{\infty} \cos (2b + \hat{\alpha}_{\infty})) = 0, \quad (2.16)$$

$$\mu_{\text{II}} \sin b(\mu_{\text{II}}^2 \cos^2 b - \hat{\rho}_{\text{II}} \sin 2(b - \hat{\gamma}_{\text{II}}) + \hat{l}_{\text{II}}) + 2\cos b(\hat{\rho}_{\infty} \sin (2b + \hat{\alpha}_{\infty}) - \mu_{\text{II}} \hat{\rho}_{\text{II}} \cos 2(b - \hat{\gamma}_{\text{II}})) + \sin b(\cos^2 b + \hat{l}_{\infty} - \hat{\rho}_{\infty} \cos (2b + \hat{\alpha}_{\infty})) = 0.$$

Здесь $\mu_{\rm II}=\hat{v}_{\rm II}/\sin b_{\rm I};\ \hat{l}_{\infty}=\varkappa_{\infty}^2-\hat{\rho}_{\infty}.$ Из второго соотношения (2.16) следует

$$\operatorname{tg} 2b = -\frac{\hat{\rho}_{\infty} \sin \hat{\alpha}_{\infty} + \hat{\rho}_{\text{II}} \cos 2\hat{\gamma}_{\text{II}}}{\hat{\rho}_{\infty} \cos \hat{\alpha}_{\infty} + \hat{\rho}_{\text{II}} \sin 2\hat{\gamma}_{\text{II}} + (1 - \mu_{\text{II}}^2)/2} =$$

$$= -\frac{\hat{\alpha}_{12} \pm \sqrt{\hat{\rho}_{\text{II}}^2 - \hat{l}_{\text{II}}^2}}{\sqrt{\hat{\rho}_{\infty}^2 - \hat{\alpha}_{12\infty}^2 + \hat{l}_{\text{II}} + (1 - \mu_{\text{II}}^2)/2}}.$$
 (2.17)

В (2.17) знак "+" соответствует значениям $b_{\rm I} < 0$, знак "-" — значениям $b_{\rm I} > 0$.

Умножая третье соотношение (2.16) на $\sin b$ и складывая с четвертым, получаем

$$\sin b(1 + \mu_{\text{II}}^3) - 2\mu_{\text{II}}\hat{\rho}_{\text{II}}\cos(b - 2\hat{\gamma}_{\text{II}}) + 2\hat{\rho}_{\infty}\sin(b + \hat{\alpha}_{\infty}) = 0.$$
 (2.18)

Третье соотношение (2.16) запишем в виде

$$\sin^2 b(1 + \mu_{\text{II}}^3) - \mu_{\text{II}} \hat{\rho}_{\text{II}} \sin 2(b - \hat{\gamma}_{\text{II}}) - \hat{\rho}_{\infty} \cos (2b + \hat{\alpha}_{\infty}) = \hat{l}_{\infty} + \mu_{\text{II}} \hat{l}_{\text{II}}. \tag{2.19}$$

Умножим (2.18) на $\sin b$ и вычтем полученное выражение из (2.19):

$$\hat{\mu}_{\rm II}\hat{\rho}_{\rm II}\sin 2\hat{\gamma}_{\rm II} - \hat{\rho}_{\infty}\cos\hat{\alpha}_{\infty} = \hat{l}_{\infty} + \hat{\mu}_{\rm II}\hat{l}_{\rm II},$$

т. е.

$$\cos \hat{\alpha}_{\infty} = -\sin \hat{g}_{\infty}, \qquad \sin \hat{g}_{\infty} = \hat{l}_{\infty}/\hat{\rho}_{\infty}, \qquad -\pi/2 < \hat{g}_{\infty} < \pi/2. \tag{2.20}$$

Из уравнения (2.18) следует

$$\operatorname{tg} b = \frac{2(\mu_{\mathrm{II}}\hat{\rho}_{\mathrm{II}}\cos2\hat{\gamma}_{\mathrm{II}} - \hat{\rho}_{\infty}\sin\hat{\alpha}_{\infty})}{1 + \mu_{\mathrm{II}}^{3} + 2(\hat{\rho}_{\infty}\cos\hat{\alpha}_{\infty} - \mu_{\mathrm{II}}\hat{\rho}_{\mathrm{II}}\sin2\hat{\gamma}_{\mathrm{II}})} =$$

$$= \frac{2(\mu_{\text{II}}(\pm\sqrt{\hat{\rho}_{\text{II}}^2 - \hat{l}_{\text{II}}^2}) - \hat{\alpha}_{12\infty})}{1 + \mu_{\text{II}}^3 - 2(\hat{l}_{\infty} + \mu_{\text{II}}\hat{l}_{\text{II}})} = \frac{X}{Y}, \tag{2.21}$$

где знак "+" соответствует значениям $b_{\rm I} < 0$, знак "-" — значениям $b_{\rm I} > 0$,

 $X = \mu_{\rm II} \hat{\rho}_{\rm II} \cos 2\hat{\gamma}_{\rm II} - \hat{\rho}_{\infty} \sin \hat{\alpha}_{\infty}, \qquad Y = (1 + \mu_{\rm II}^3)/2 + \hat{\rho}_{\infty} \cos \hat{\alpha}_{\infty} - \mu_{\rm II} \hat{\rho}_{\rm II} \sin 2\hat{\gamma}_{\rm II}.$

Поскольку tg 2b=2 tg $b/(1-{\rm tg}^2\,b)$, из $(2.17),\,(2.21)$ получаем

$$-X^2 + Y^2 + 2\hat{B}XY = 0. (2.22)$$

Здесь

$$2\hat{B} = \frac{2(\hat{l}_{\text{II}} - \hat{l}_{\infty}) + 1 - \mu_{\text{II}}^2}{\hat{\alpha}_{12\infty} + \hat{\rho}_{\text{II}}\cos 2\hat{\gamma}_{\text{II}}}.$$
(2.23)

Из (2.22) следует

$$\frac{X}{Y} = \hat{B} \pm \sqrt{1 + \hat{B}^2} = \frac{1 + \hat{G}}{1 - \hat{G}}, \qquad \frac{\hat{G} - 1}{1 + \hat{G}} = \operatorname{tg}\left(\hat{\psi} + \frac{\pi}{4}\right), \operatorname{tg}\left(\hat{\psi} - \frac{\pi}{4}\right),$$

где

$$\hat{G} = \operatorname{tg} \hat{\psi} = \frac{\sqrt{1 + \hat{B}^2} - 1}{\hat{B}}, \qquad |\hat{G}| < 1, \qquad |\hat{\psi}| < \frac{\pi}{4},$$

т. е. с учетом (2.21)

$$tg b = tg (\hat{\psi} \pm \pi/4). \tag{2.24}$$

Замечание 2.2. В силу (2.20) $\hat{l}_{\infty} < 0$. Тогда при $b_{\rm I} > 0$

 $2(\hat{l}_{\text{II}} - \hat{l}_{\infty}) + 1 - \mu_{\text{II}}^2 = 2(\hat{l}_{\text{II}} - \hat{l}_{\infty}) + 1 + 2\hat{\rho}_{\text{II}}(\operatorname{ctg} b_{\text{I}} \cos \hat{g}_{\text{II}} - \sin \hat{g}_{\text{II}}) = -2\hat{l}_{\infty} + 1 + 2\hat{\rho}_{\text{II}} \cos \hat{g}_{\text{II}} \operatorname{ctg} b_{\text{I}} > 0,$ при $b_{\text{I}} < 0$

$$2(\hat{l}_{\rm II} - \hat{l}_{\infty}) + 1 - 2\hat{\rho}_{\rm II}(\operatorname{ctg} b_{\rm I} \cos \hat{g}_{\rm II} + \sin \hat{g}_{\rm II}) = -2\hat{l}_{\infty} + 1 - 2\hat{\rho}_{\rm II} \cos \hat{g}_{\rm II} \operatorname{ctg} b_{\rm I} > 0.$$

За счет выбора параметра $\hat{\alpha}_{12\infty}$ знаменатель в формуле (2.23) $\alpha_{12\infty}-\sqrt{\hat{\rho}_{\rm II}^2-\hat{l}_{\rm II}^2}$ при $b_{\rm I}>0$ и $\alpha_{12\infty}+\sqrt{\hat{\rho}_{\rm II}^2-\hat{l}_{\rm II}^2}$ при $b_{\rm I}<0$ можно сделать больше нуля. Анализ формулы (2.23)

(см. также формулы (2.24)) показывает, что в отличие от случая обычной жидкости (газа) поток полимерной жидкости, обтекающий клин, несимметричен относительно оси Ox (см. рис. 1, 2). Это обусловлено тем, что в набегающем потоке полимерной жидкости компоненты тензора анизотропии отличны от нуля.

Полученные выше формулы позволяют также построить двухпалубную модель обтекания плоского клина с углом при вершине, равным 2a, расположенного несимметрично относительно оси Ox, и плоского полуклина с углом при вершине a.

Рассмотрим частный случай $\bar{k} = k - \beta = 0$. В этом случае справедливы следующие соотношения:

$$\hat{l}_{\rm I} = \varkappa_{\rm I}^2 \frac{2\beta_{\rm I} - 1}{2\beta_{\rm I}}, \qquad \hat{l}_{\rm II} = \varkappa_{\rm II}^2 \frac{2\beta_{\rm II} - 1}{2\beta_{\rm II}}, \qquad 0 < \beta_{\rm I}, \quad \beta_{\rm II} < 1.$$

При этом условие (2.10) принимает вид

$$\sin 2(b_{\rm I}-a) = \pm \frac{2\varkappa_{\rm II}^2\beta_{\rm I}}{\varkappa_{\rm I}^2} \sqrt{\frac{1-\beta_{\rm II}}{\beta_{\rm II}}} = \pm \hat{n}, \qquad \hat{n} < 1.$$

Следовательно,

$$b_{\rm I} = \begin{cases} a + \arcsin(\hat{n}/2), & a > 0, \\ a - \arcsin(\hat{n}/2), & a < 0. \end{cases}$$

Угол \hat{g}_{II} находим из соотношения

$$\sin \hat{g}_{II} = 2\beta_{II} - 1, \qquad \beta_{II} > 1/2.$$

Тогда

$$b_{\rm I} + \hat{g}_{\rm II} = a + \arcsin(\hat{n}/2) + \hat{g}_{\rm II} > \pi/2,$$
 $a > 0,$
 $b_{\rm I} - \hat{q}_{\rm II} = a - \arcsin(\hat{n}/2) - \hat{q}_{\rm II} < -\pi/2,$ $a < 0,$

если, например, $1 - \beta_{\rm II}$ — малая величина.

Условие (2.20) принимает вид

$$(1 - (\hat{\alpha}_{12\infty}/\hat{\rho}_{\infty})^2)^{1/2} = -(2\beta_{\infty} - 1) > 0, \quad 0 < \beta_{\infty} < 1/2.$$

Следовательно, при $\hat{\alpha}_{12\infty} > 0$

$$\hat{\alpha}_{12\infty} = 2\hat{\rho}_{\infty}\sqrt{\beta_{\infty}(1-\beta_{\infty})}, \qquad \hat{\rho}_{\infty} = \varkappa_{\infty}^2/(2\beta_{\infty}).$$

При этом формула (2.23) имеет вид

$$2\hat{B} = \begin{cases} (\hat{d}_{\infty} + 2\hat{\lambda} \operatorname{ctg} b_{\mathrm{I}})/(1 - \hat{\lambda}), & b_{\mathrm{I}} > 0, \\ (\hat{d}_{\infty} - 2\hat{\lambda} \operatorname{ctg} b_{\mathrm{I}})/(1 + \hat{\lambda}), & b_{\mathrm{I}} < 0. \end{cases}$$

Здесь

$$\hat{d}_{\infty} = \frac{1 - 2\beta_{\infty} + \beta_{\infty}/\varkappa_{\infty}^{2}}{\sqrt{\beta_{\infty}(1 - \beta_{\infty})}}, \qquad \hat{\lambda} = \frac{\varkappa_{\text{II}}^{2}}{\varkappa_{\infty}^{2}}\sqrt{\frac{\beta_{\infty}(1 - \beta_{\text{II}})}{\beta_{\text{II}}(1 - \beta_{\infty})}}.$$

Заключение. В работе рассмотрена задача об обтекании плоского бесконечного клина потоком несжимаемой полимерной жидкости. Установлено, что для обеспечения выполнения на поверхности клина условия прилипания необходимо допустить наличие двух поверхностей сильного разрыва, а не одной, как в классической задаче об обтекании клина.

Обосновано существование стационарных решений с двумя сильными разрывами и проведено их исследование. Показано, что в рамках данной модели картина обтекания несимметрична относительно оси симметрии клина. Это обусловлено наличием ненулевых членов $\hat{a}_{12\infty} = \hat{a}_{21\infty}$ тензора анизотропии. Рассмотрен случай $\bar{k} = 0$.

ЛИТЕРАТУРА

- 1. **Алтухов Ю. А.** Введение в мезоскопическую теорию текучих полимерных систем / Ю. А. Алтухов, А. С. Гусев, Г. В. Пышнограй. Барнаул: Алт. гос. пед. акад., 2012.
- 2. **Блохин А. М., Бамбаева Н. В.** Стационарные решения уравнений несжимаемой вязкоупругой полимерной жидкости // Журн. вычисл. математики и мат. физики. 2014. Т. 54, № 5. С. 55–69.
- 3. **Блохин А. М., Семенко Р. Е.** Об одной модели вихревого движения несжимаемой полимерной жидкости в приосевой зоне // Сиб. журн. индустр. математики. 2016. Т. 19, № 1. С. 52–61.
- 4. **Мусхелишвили Н. И.** Некоторые основные задачи математической теории упругости. М.: Наука, 1966.
- 5. Лойцянский Л. Г. Механика жидкости и газа. М.: Наука, 1978.

Поступила в редакцию 28/IX 2016 г., в окончательном варианте — 30/XI 2016 г.