2015. Том 56, № 4 Июль C. 836 – 841

КРАТКИЕ СООБЩЕНИЯ

УДК 546.59:547.89:548.737

КРИСТАЛЛИЧЕСКАЯ И МОЛЕКУЛЯРНАЯ СТРУКТУРА [$Au(C_{14}H_{22}N_4)$] ReO_4

В.А. Афанасьева¹, Л.А. Глинская¹, Д.А. Пирязев^{1,2}, С.А. Громилов^{1,2}

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия E-mail: 1311@niic.nsc.ru

Статья поступила 30 мая 2014 г.

Синтезирован перренат тетраазамакроциклического комплекса золота(III) [Au($C_{14}H_{22}N_4$)]ReO₄. Методом PCA монокристалла определена кристаллическая структура соединения. Кристаллографические данные: $a=7,733(2),\ b=11,368(2),\ c=11,685(2)$ Å, $\alpha=116,23,\ \beta=104,26,\ \gamma=94,96^\circ;\ V=870,3(3)$ ų, пр. гр. $P(-1),\ Z=2,\ d_{\text{Выч}}=2,647\ г/\text{см}^3,\ R=0,0245.$ Упаковка комплекса составлена из сдвоенных стопок катионов и цепочек анионов, связанных в двумерные слои за счет слабых межмолекулярных взаимодействий (неклассические водородные связи С—Н...О, С—Н...Аи, С—Н... π и контакты Аи...Аи). Изучено термическое разложение полученного соединения в атмосфере водорода. По данным рентгенофазового анализа продуктом восстановления синтезированной соли является смесь нанокристаллических фаз Re и Au с размерами областей когерентного рассеяния 17 и 13 нм соответственно.

DOI: 10.15372/JSC201504028

Ключевые слова: золото, рений, тетраазамакроцикл, комплексная соль, рентгеноструктурный анализ, рентгенофазовый анализ, кристаллохимия, термолиз.

Поиск новых перспективных материалов для получения металлических фаз в нанокристаллическом состоянии является актуальной задачей современной химии и материаловедения. В последнее время возрастает значение гетерометаллических катализаторов, содержащих благородный и неблагородный металлы в различных пропорциях. Относительно простым способом синтеза катализаторов является разложение комплексных соединений в инертной или восстановительной атмосферах. В качестве предшественников при получении металлических фаз в нанокристаллическом состоянии могут быть использованы биметаллические комплексные соли. Перспективным является использование соединений, содержащих катионы с органическими лигандами и оксоанионы металлов, в частности, перренат-анион. Подобные соединения с различным соотношением ионов и соответственно М:Re получены как для металлов платиновой группы [1—5], так и для золота [6, 7]. Синтезированная в настоящей работе новая комплексная соль $[Au(C_{14}H_{22}N_4)]ReO_4$ является предшественником для получения нанокристаллической биметаллической фазы с соотношением Au:Re=1:1.

В работе использовали NaReO₄ марки XЧ, диэтиловый спирт — ректифицированный, диметилформамид Ч; 5,7,12,14-тетраметил-1,4,8,11-тетраазациклотетрадека-4,6,11,13-тетраенато-золото(III) бромид [Au(C₁₄H₂₂N₄)]Вг получали согласно [8].

Синтез [Au(C₁₄H₂₂N₄)]ReO₄. Перренат тетраазамакроциклического комплекса золота(III), 5,7,12,14-тетраметил-1,4,8,11-тетраазациклотетрадека-4,6,11,13-тетраенатозолото(Ш) перренат [Au(C₁₄H₂₂N₄)]ReO₄, синтезировали следующим образом. К раствору 0,039 г комплекса

²Новосибирский национальный исследовательский государственный университет, Россия

[©] Афанасьева В.А., Глинская Л.А., Пирязев Д.А., Громилов С.А., 2015

[Au($C_{14}H_{22}N_4$)]Вг в 3,6 мл спирта добавляли по каплям при перемешивании магнитной мешалкой 1,8 мл насыщенного спиртового раствора NaReO₄. Выпавший желтый осадок отфильтровывали от маточника, промывали спиртом (3 раза по 1,0—1,5 мл), высушивали. Выход 0,041 г (82 %). Найдено, %: С 24,3, Н 3,5, N 8,0. Для $C_{14}H_{22}N_4O_4AuRe$ вычислено, %: С 24,25, Н 3,20, N 8,08. Элементный анализ проводили в аналитической лаборатории ИНХ СО РАН. Полученный комплекс устойчив на воздухе, растворим в ДМФА, слабо растворим в воде и этиловом спирте.

Прозрачные монокристаллы соединения изометричной формы желтого цвета, пригодные для РСА, выращивали из раствора комплекса в ДМФА.

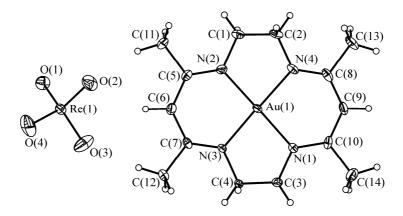
PCA. Экспериментальный массив рентгеновских отражений получали на автодифрактометре Bruker X8 APEX CCD при температуре 150 K по стандартной методике (MoK_{α} -излучение, $\lambda = 0,71073$ Å, графитовый монохроматор). Структура расшифрована прямым методом и уточнена полноматричным МНК в анизотропном для неводородных атомов приближении по комплексу программ SHELXL-97 [9]. Положения атомов Н локализованы геометрически и уточнены в модели наездника. Их параметры рассчитывали в каждом цикле уточнения по координатам соответствующих атомов углерода. Основные кристаллографические характеристики комплекса приведены в табл. 1. Значения основных межатомных расстояний и валентных углов приведены в табл. 2. Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджской базе структурных данных (ССDС № 1005644), а также могут быть получены у авторов.

Рентгенографическое исследование поликристаллов проведено на дифрактометре Shimadzu XRD-7000 (CuK_{α} -излучение, схема Брэгга—Брентано, комнатная температура, внешние эталоны Si и LaB₆). Дифрактограмма полностью проиндицирована по данным исследования монокристалла, что подтверждает однофазность синтезированного продукта. Полнопрофильное уточнение проведено по программе Powder Cell [10].

Термическое разложение поликристаллов проведено в атмосфере водорода при 800 °C (выдерживание в течение 1 ч, продувка гелием, быстрое охлаждение до комнатной температуры).

 $\label{eq:Table} \begin{tabular}{ll} T a б л и ц a & 1 \\ $\mathit{Кристаллографические}$ характеристики, детали эксперимента и уточнения \\ $\mathit{структуры}$ [Au(C_{14}H_{22}N_4)]ReO_4 \\ \end{tabular}$

Эмпирическая формула	$C_{14}H_{22}AuN_4O_4Re$
M	693,52
Сингония	Триклинная
Пространственная группа	P(-1)
$a,b,c, ext{\AA}$	7,733(2), 11,368(2), 11,685(2)
α , β , γ , град.	116,23(3), 104,26(3), 94,96(3)
V , \mathring{A}^3	870,3(3)
Z ; ρ (выч.), r/cm^3	2; 2,647
μ , mm ⁻¹	15,394
Размеры кристалла, мм	$0,2 \times 0,2 \times 0,15$
Область сканирования, θ , град.	2,05—30,67
Число измер. / независ. отражений ($R_{\rm int}$)	11567 / 4770 (0,0270)
Число отражений с $I > 2\sigma(I)$	4235
Число уточняемых параметров	221
GOOF no F^2	1,144
R -фактор $I > 2\sigma(I)$	$R_1 = 0.0245, \ wR_2 = 0.0503$
R -фактор (по всем I_{hkl})	$R_1 = 0.0296, \ wR_2 = 0.0515$
Остаточная электронная плотность (max / min), e/Å ³	1,148 / -1,276


Таблица 2

Основные межатомные расстояния d (Å) и валентные углы ω (град.)
в структуре $[Au(C_{14}H_{22}N_4)]ReO_4$

Связь	d	Связь	d	Угол	ω
A ₁₁ (1) N(1)	1.002(4)	Pa ()(1)	1.727(4)	N(1) A ₁₁ (1) N(2)	179 0(2)
Au(1)-N(1)	1,992(4)	Re—O(1)	1,727(4)	N(1)— $Au(1)$ — $N(2)$	178,0(2)
Au(1)-N(2)	1,992(4)	Re—O(2)	1,729(4)	N(1)— $Au(1)$ — $N(4)$	95,8(2)
Au(1)-N(3)	1,986(4)	Re—O(3)	1,718(4)	N(2)— $Au(1)$ — $N(4)$	84,3(2)
Au(1)-N(4)	1,988(4)	Re—O(4)	1,720(4)	N(1)— $Au(1)$ — $N(3)$	83.9(2)
N(1)— $C(10)$	1,331(6)	C(1)—C(2)	1,514(7)	N(2)—Au(1)—N(3)	96,1(2)
N(1)— $C(3)$	1,476(6)	C(3)—C(4)	1,527(6)	N(4)—Au(1)—N(3)	178,4(2)
N(2)— $C(5)$	1,332(6)	C(5)—C(6)	1,403(7)	O(3)—Re(1)—O(4)	109,3(2)
N(2)— $C(1)$	1,477(6)	C(5)— $C(11)$	1,514(6)	O(3)— $Re(1)$ — $O(1)$	109,0(2)
N(3)— $C(7)$	1,330(6)	C(6)-C(7)	1,417(6)	O(4)— $Re(1)$ — $O(1)$	111,0(2)
N(3)— $C(4)$	1,475(5)	C(7)— $C(12)$	1,511(6)	O(3)— $Re(1)$ — $O(2)$	109,7(2)
N(4)— $C(8)$	1,334(6)	C(8)—C(9)	1,409(7)	O(4)—Re(1)—O(2)	109,0(2)
N(4)— $C(2)$	1,470(6)	C(8)—C(13)	1,505(7)	O(1)—Re(1)—O(2)	108,8(2)
C(9)—C(10)	1,407(7)	C(10)—C(14)	1,524(6)		

Результаты и их обсуждение. Кристаллическая структура соединения составлена из комплексных катионов $[\mathrm{Au}(\mathrm{C}_{14}\mathrm{H}_{22}\mathrm{N}_4)]^+$ и перренат-анионов ReO_4^- (рис. 1). В координационную сферу атома Au входит четыре атома азота с расстояниями Au—N 1,986(4)—1,992(4) Å. К четырем атомам углерода C(5), C(7), C(8) и C(10) 6-членных колец присоединены метильные группы. Комплексный катион практически плоский, среднеквадратичное отклонение всех неводородных атомов 0,105(5) Å. 6-Членные кольца AuNCCCN плоские, среднее отклонение неводородных атомов от их среднестатистических плоскостей не превышает 0,030(3) Å. Оба 5-членных этилендиаминовых кольца имеют конформацию конверта: атом C(1) отклоняется от среднеквадратичной плоскости из четырех атомов на -0,439(7) Å , а атом C(3) — на 0,494(7) Å. В целом длины связей N—C и C—C и величины валентных углов катиона $[\mathrm{Au}(\mathrm{C}_{14}\mathrm{H}_{22}\mathrm{N}_4)]^+$ (см. табл. 2) аналогичны значениям в структурах $[\mathrm{Au}(\mathrm{C}_{14}\mathrm{H}_{22}\mathrm{N}_4)]\mathrm{Br}$ [11] и $[\mathrm{Au}(\mathrm{C}_{14}\mathrm{H}_{22}\mathrm{N}_4)]\mathrm{AuBr}_2$ [12]. В тетраэдре перренат-аниона расстояния Re—O изменяются от 1,718(4) до 1,729(4) Å, средние значения углов при атомах Re (109,5°) близки к стандартным.

На рис. 2 представлена проекция структуры на плоскость (100). Катионы $[Au(C_{14}H_{22}N_4)]^+$, размноженные центрами симметрии, образуют сдвоенные стопки в направлении короткой оси x.

Puc. 1. Строение комплексного катиона $[Au(C_{14}H_{22}N_4)]^+$ и аниона ReO_4^- с обозначениями неводородных атомов

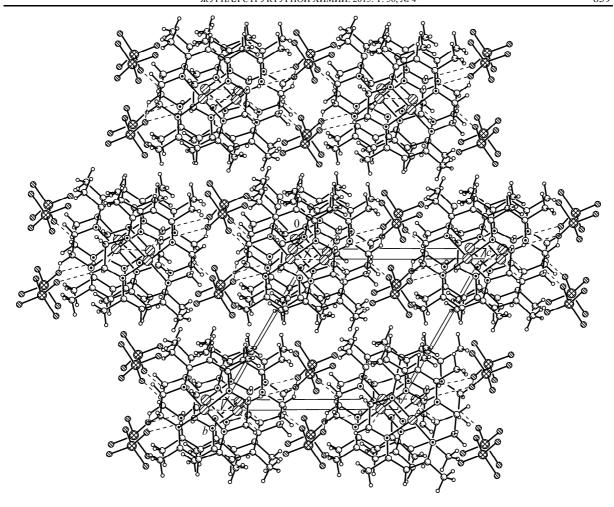


Рис. 2. Проекция кристаллической структуры на плоскость (100)

В пустотах между стопками размещены бесконечные цепочки анионов ${\rm ReO}_4^-$ (также в направлении оси x).

Катионы сдвоенных стопок связаны попарно слабыми контактами Au...Au (4,240(2) Å). Два атома водорода метиленовых групп $C(1)H_2$ и $C(2)H_2$ одного из 5-членных колец связаны с центральными атомами Au выше- и нижележащего катионов (H...Au 3,127(1) и 3,310(1) Å), образуя цепочки вдоль короткой оси x (рис. 3). Контакты С—H...Au сопровождаются взаимодействиями с π -системами гетероциклических 6-членных колец AuNCCCN (С—H... π) с расстояниями H...центроид 2,53 и 2,90 Å.

Стопки катионов и цепочки анионов объединены в 2D слои за счет H-связей С—H...O метильных и метиленовых групп с атомами кислорода перренат-анионов (H...O 2,532(5)—2,587(6) Å). Слои параллельны плоскости ac и характеризуются наличием катион-анионных цепочек, а также катион-катионных и катион-анионных колец различной размерности. На рис. 3 представлен один из слоев.

В работах [1, 13, 14] при описании мотива построения кристаллических структур комплексных солей [M(En)₂](ReO₄)₂, (M = Cu, Pd, Pt), имеющих плоские комплексные катионы и анионы ReO_4^- , был использован несколько модифицированный метод трансляционных подрешеток [15]. Суть модификации изложена в [16] и заключается в построении теоретической дифрактограммы только по атомам, принадлежащим интересующему фрагменту (например, комплексному катиону или аниону). Это позволяет выявить кристаллографические плоскости, наиболее заселенные конкретными атомами, и изучить мотив их взаимного расположения.

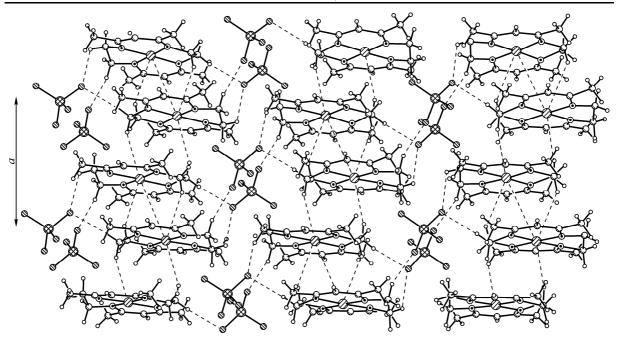


Рис. 3. Вид слоя катионов и анионов в направлении короткой оси а

В нашем случае расчет теоретической дифрактограммы был выполнен только по атомам Au. Далее, используя программу [17], были найдены возможные варианты. В результате анализа было установлено, что наиболее симметричная подрешетка образована пересечением семейств плоскостей $\{0\ 1\ 0\},\ \{0\ -1\ 1\},\ \{-2\ 0\ 1\}$. Она построена на векторах: $\mathbf{a}_{\rm T} = \mathbf{a}/2 + \mathbf{b} + \mathbf{c},\ \mathbf{b}_{\rm T} = \mathbf{a}/2 + \mathbf{c},\ \mathbf{c}_{\rm T} = -\mathbf{a}/2$. Метрики выделенной подрешетки — $a_{\rm T} = 11,55,\ b_{\rm T} = 11,37,\ c_{\rm T} = 3,87\ \text{Å},\ \alpha_{\rm T} = 94,99,\ \beta_{\rm T} = 90,03,\ \gamma_{\rm T} = 59,46^\circ$ — позволяют рассматривать мотив расположения катионов как псевдогексагональный в направлении вектора $\mathbf{c}_{\rm T}$. Действительно, это хорошо видно на рис. 2.

Рентгенофазовый анализ продукта разложения комплекса в атмосфере водорода при 800 °C показал наличие двух нанокристаллических фаз — Re и Au — с размерами областей когерентного рассеяния 17 и 13 нм соответственно.

Авторы благодарят к.х.н. А.В. Задесенца за проведение термического разложения изученной соли и к.х.н. О.С. Кощееву за данные элементного анализа.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Храненко С.П., Быкова Е.А., Алексеев А.В. и др.* // Журн. структур. химии. 2012. **53**, № 3. С. 520 526.
- 2. Васильченко Д.Б., Байдина И.А., Филатов Е.Ю., Коренев С.В. // Журн. структур. химии. -2009. -50, № 2. C. 349 356.
- 3. *Храненко С.П.*, *Быкова Е.А.*, *Алексеев А.В.*, *Громилов С.А.* // Журн. структур. химии. -2012. **53**, № 3. C. 527 533.
- 4. Корольков И.В., Задесенец А.В., Громилов С.А. и др. // Журн. структур. химии. -2006. -47, № 3. -C.503-511.
- 5. *Шубин Ю.В.*, *Филатов Е.Ю.*, *Байдина И.А. и др.* // Журн. структур. химии. 2006. **47**, № 6. С. 1115 1122.
- 6. Макотченко Е.В., Байдина И.А. // Журн. структур. химии. 2011. **52**, № 3. С. 572 576.
- 7. Байдина И.А., Макотченко Е.В., Шушарина Е.А. и др. // Журн. структур. химии. 2010. **51**, № 3. С. 544 551.
- 8. *Афанасьева В.А., Миронов И.В., Глинская Л.А. и др.* // Журн. структур. химии. 2003. **44**, № 1. С. 83 89.
- 9. Sheldrick G.M. // Acta Crystallogr. A. 2008. 64, N 1. P. 112.

- 10. *Kraus W., Nolze G.* // J. Appl. Crystallogr. 1996. **29**. P. 301 303.
- 11. *Глинская Л.А., Афанасьева В.А., Клевцова Р.Ф.* // Журн. структур. химии. 2004. **45**, № 1. С. 129 134
- 12. Афанасьева В.А., Глинская Л.А., Клевцова Р.Ф., Миронов И.В. // Координац. химия. -2011. -37, № 5. C. 323 330.
- 13. *Шушарина Е.А., Храненко С.П., Громилов С.А.* // Журн. структур. химии. 2011. **52**, № 1. С. 206 208
- 14. *Храненко С.П., Куратьева Н.В., Громилов С.А.* // Журн. структур. химии. -2014. -55. в печати.
- 15. Борисов С.В. // Журн. структур. химии. 1986. 27, № 3. С. 164 167.
- 16. Громилов С.А. Определение структурных мотивов координационных соединений на основе точных рентгендифрактометрических данных поликристаллов. Автореф. дис. д.ф.-м.н. Новосибирск: ИНХ СО РАН, 2005.
- 17. Громилов С.А., Быкова Е.А., Борисов С.В. // Кристаллография. -2011. **56**, № 6. С. 1013-1018.