2009. Tom 50. № 6

Ноябрь – декабрь

C. 1196 – 1202

УДК 54-386:661.856:541.6:546.42:546.43:548.736

КРИСТАЛЛИЧЕСКИЕ И МОЛЕКУЛЯРНЫЕ СТРУКТУРЫ ДВУЯДЕРНЫХ КОМПЛЕКСОВ {Cu—M} (M = Cu, Sr, Ba) НА ОСНОВЕ САЛИЦИЛОВОЙ КИСЛОТЫ

© 2009 В.В. Горинчой¹, Ю.А. Симонов², С.Г. Шова², В.Н. Шофрански¹, К.И. Туртэ¹*

Статья поступила 5 августа 2008 г.

С доработки — 9 сентября 2008 г.

При взаимодействии салицилатов *s*-элементов с нитратом меди синтезированы гетерометаллические комплексы [CuSr(SalH)₄(DMAA)₄(H₂O)] (II) и [CuBa(SalH)₄(DMAA)₄× ×(H₂O)] (III), а из смеси III и сульфата ванадила выделены кристаллы гомоядерного комплекса [CuCu(SalH)₄(H₂O)₂] · 2DMAA (I). Исследование монокристаллов выделенных соединений методом рентгеноструктурного анализа показало, что все они имеют форму "фонарик" и относятся к двум пространственным группам симметрии: I к триклинной группе симметрии P-1 с параметрами ячейки a = 9,9083(2), b = 10,5077(3), c == 10,9512(3) Å, α = 112,736(2), β = 114,0800(10), γ = 93,131°; **II** и **III** — к тетрагональной группе P4/n с параметрами a = b = 16,3180(3), c = 8,7838(2) Å для **II** и a = b = 16,362(3), c = 8,920(1) Å для III. Атом меди находится в квадратно-пирамидальной координации. Координационное число Sr и Ва равно 8, а их координационные полиэдры можно представить как томсоновский куб. Карбоксильные группы координируют по син-синмостиковому типу. Атом кислорода гидроксильной группы салициловой кислоты не участвует в координации, но участвует в образовании внутрисферных водородных связей с карбоксильными группами. В упаковке молекул в кристалле главную роль играют водородные связи молекул воды и сольватных молекул DMAA, а также π - π -взаимодействие между ароматическими частями димеров.

Ключевые слова: синтез, гомо- и гетеродвуядерные салицилаты, медь, рентгеноструктурный анализ.

ВВЕДЕНИЕ

В обзоре [1] приведены данные по синтезу и исследованию координационных соединений s-, p-, d- и f-элементов с салициловой кислотой, в которых указывается, что сама кислота и ее анионы (SalH₂, SalH⁻, Sal²⁻) могут быть моно-, би-, три- и более дентатными лигандами. Особенность салициловой кислоты состоит в том, что в координации к комплексообразователю могут участвовать одна или обе функциональные группы лиганда: —СООН и —ОН [1—3]. В результате образуются гомо- и гетероядерные салицилаты металлов, при этом ион Bi^{III} наиболее предрасположен к образованию гетероядерных салицилатов. Партнерами этого металла обычно являются титан, ниобий, тантал, медь и др. В состав таких комплексов иногда входят и другие лиганды, такие как основания Шиффа, ацетилацетон, вода, алкокси-анион и др.

Следует отметить, что комплексы салициловой кислоты с различными металлами нашли и некоторое практическое применение: они используются в качестве прекурсоров синтеза новых соединений, в повышении антикоррозионной защиты моторов внутреннего сгорания [4—6], а также в поиске новых активных биологических средств [7].

¹Институт химии Академии наук Молдовы, Кишинев

 $^{^{2}}$ Институт прикладной физики Академии наук Молдовы, Кишинев

^{*} E-mail: turtac@yahoo.com

Широко известно, что карбоксильная группа выступает как полидентатный лиганд, имея дентатность от 1 до 4 [8]. При широкой гамме осевого лиганда L (H_2O , пиридин, хинолин, α -и β -пиколин, мочевина, и т.д.) в кристалле реализуются двуядерные соединения типа [$LCu(R-COO)_4CuL$]. По данным Кэмбриджского банка структур данного типа насчитываются более ста. Замена L на насыщенный амин приводит к радикальным структурным перестройкам, и при тех же соотношениях металл—кислотный остаток образуются полимерные (L = n-толуидин, анилин) или мономерые ($L = NH_3$) соединения [9].

Кроме вышеуказанных комплексов, в настоящее временя известно 19 соединений (КБСД), где содержится двухъядерный фрагмент {Cu— M^{2+} }, в котором ионы металлов связаны четырьмя карбоксильными *син—син*-мостиками. Среди них есть и содержащие щелочно-земельные элементы, как то [1,2,2,2,2,-пента-аква-тетракис(μ_2 -(2-хлоропентокси)-этанолато-O,O')-медь(II)-кальций(II)] [10], [бис((μ_3 -N,N,N-триэтилглицинато-O,O')-трис(μ_2 -N,N,N-триэтилглицинато-O,O')-(нитрато-O)-кальций-медь(II))тетранитрат пентагидрат] [11] или редкие земли [декакис(μ_2 -хлороацетато-O)-окта-аква-тримедь(II)-дигольмий динитрат] [12], [декакис(μ_2 -хлороацетато-O)-окта-аква-тримедь(II)-бис-диспрозий дигидрат] [12], [декакис(μ_2 -хлороацетато-O,O')-бис(хлороацетато-O)-окта-аква-дигадолиний(III)-тримедь(II) дигидрат] [13] и др.

Что касается комплексов меди(II) с салициловой кислотой, в литературе известно строение только двух димеров состава $[H_2OCu(C_6H_4(OH)COO)_4CuH_2O] \cdot C_4H_8O_2$ [14] и $[H_2OCu(C_6H_4(OH)\times \times COO)_4CuEtOH]$ [15]. Другие димерные комплексы меди с салициловой кислотой не описаны.

Предметом исследования данной работы является комплексообразование меди и щелочноземельных металлов с салициловой кислотой в среде диметилацетамида с целью получения гетероядерных соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные соли $Sr(SalH)_2 \cdot 3H_2O$ и $Ba(SalH)_2 \cdot H_2O$ синтезированы при взаимодействии карбоната стронция или гидроксида бария с салициловой кислотой. Остальные реактивы (CH₃OH, диметилацетамид \equiv DMAA, THF) были покупными и дополнительно не очищали.

Синтез [CuCu(SalH)₄(H₂O)₂]·2DMAA (I). К раствору 0.3 г (0.26 ммоль) [CuBa(SalH)₄× \times (DMAA)₄(H₂O)] (методика синтеза приведена ниже) в 15 мл метанола добавляли при постоянном перемешивании 0.057 г (0.26 ммоль) VOSO₄·3H₂O, растворенные в 10 мл воды. Через 40 мин перемешивания зеленый раствор отфильтровывали. Из фильтрата в течение 10 дней выпали темно-зеленные кристаллы в виде прямоугольных призм. Выход — 0.16 г (72%). Результаты элементного анализа: найдено, %: С 48.52, Н 4.63, N 3.26. Для C_{36} Н₄₂Сu₂N₂O₁₆ вычислено, %: С 48.81, Н 4.77, N 3.16.

Синтез [CuSr(SalH)₄(DMAA)₄(H₂O)] (II). К раствору 6,29 г (15,12 ммоль) Sr(SalH)₂· 3H₂O в 25 мл метанола добавляли при постоянном перемешивании 1,00 г (4,13 ммоль) Cu(NO₃)₂· 3H₂O. Через 30 мин раствор отфильтровывали и высушивали на водяной бане. К сухой массе добавляли смесь растворителей: 18 мл ТНГ и 7 мл DMAA. После 20-минутного перемешивания при комнатной температуре полученный темно-зеленый раствор отфильтровывали и оставляли на воздухе при комнатной температуре. В течение 4 недель выпали темно-синие кристаллы в виде прямоугольных призм. Выход — 3,98 г (90 %). Результаты элементного анализа: найдено, %: С 49,60, Н 5,49, N 5,25, Cu 6,20, Sr 8,40. Для С₄₄H₅₈SrCuN₄O₁₇ вычислено, %: С 49,57, Н 5,48, N 5,25, Cu 5,95, Sr 8,21.

Синтез [CuBa(SalH)₄(DMAA)₄(H₂O)] (III). К раствору 7,11 г (16,55 ммоль) Ba(SalH)₂· H₂O в 25 мл метанола добавляли при постоянном перемешивании 1 г (4,13 ммоль) Cu(NO₃)₂· 3 H₂O. Через 30 мин раствор отфильтровывали и высушивали на водяной бане. К сухой массе добавляли смесь растворителей: 18 мл ТНF и 7 мл DMAA. После 20-минутного перемешивания при комнатной температуре полученный темно-зеленый раствор отфильтровывали и оставляли на

Таблица 1 Кристаллографические характеристики комплексов **I—III**

Характеристика	I	II	III	
Бругто-формула	$C_{36}H_{42}Cu_2N_2O_{16}$	C ₄₄ H ₅₈ SrCuN ₄ O ₁₇	C ₄₄ H ₅₈ BaCuN ₄ O ₁₇	
M	885,80	1066,10	1115,82	
Температура, К	100(2)	100(2)	100(2)	
Длина волны, Å	0,71073	0,71073	0,71073	
Пространственная группа	<i>P</i> -1	P4/n	P4/n	
a,b,c, Å	9,9083(2), 10,5077(3), 10,9512(3)	16,3180(3), 16,3180(3), 8,7838(2)	16,362(3), 16,362(3), 8,920(1)	
α , β , γ , град.	112,736(2), 114,0800(10), 93,131(2)	90, 90, 90	90, 90, 90	
V , $\mathring{\mathbb{A}}^3$	929,04(4)	2338,92(8)	2388,0(9)	
Z	1	2	2	
$\rho_{\scriptscriptstyle \mathrm{BM}^{\mathrm{u}}},\ \Gamma/\mathrm{cm}^3$	1,583	1,514	1,552	
$\mu_{Mo}, \mathrm{MM}^{-1}$	1,223	1,672	1,340	
Области по углам θ , град.	2,17—26,00	1,76—30,04	2,60—25,78	
Ограничения по индексам	$-12 \le h \le 12$,	$-22 \le h \le 22,$	$-19 \le h \le 19$,	
	$-12 \le k \le 12,$	$-22 \le k \le 22,$	$-19 \le k \le 19,$	
	$-13 \le l \le 13$	$-12 \le l \le 12$	$-10 \le l \le 10$	
Число отражений	25488	69437	78174	
Число независимых рефлексов,	3641	3432	2284	
$I > 2\sigma(I)$	[R(int) = 0.0371]	[R(int) = 0.0900]	[R(int) = 0.0358]	
Полнота сбора данных до $\theta_{\text{\tiny Max}},\%$	99,5	100	99,3	
Число уточняемых параметров	283	158	169	
GOOF no F^2	1,032	1,090	1,075	
Конечные R -факторы $I \ge 2\sigma(I)$	$R_1 = 0.0258,$ $wR_2 = 0.0712$	$R_1 = 0.0344,$ $wR_2 = 0.0857$	$R_1 = 0.0181,$ $wR_2 = 0.0445$	
<i>R</i> -факторы (все данные)	$R_1 = 0.0297,$ $wR_2 = 0.0730$	$R_1 = 0.0488,$ $wR_2 = 0.0922$	$R_1 = 0.0173,$ $wR_2 = 0.0449$	
Δho_{max} и $\Delta ho_{min}, e \cdot \mathring{\mathbb{A}}^{-3}$	0,358 и -0,305	0,506 и -1,241	0,347 и -0,513	

воздухе при комнатной температуре. В течение 7 дней выпали темно-голубые кристаллы в виде прямоугольных призм. Выход — 4,23 г (91 %). Результаты элементного анализа: найдено, %: С 47,22, H 5,23, N 4,76. Для C_{44} H_{58} Ba Cu N_4 O_{17} вычислено, %: С 47,36, H 5,23, N 5,02.

Элементный анализ (C, H, N) веществ выполнили в группе элементного анализа Института химии Академии наук Молдовы; металлы определили в Центре метрологии и аналитических методов исследования Академии наук Молдовы на атомном абсорбционном спектрометре AAS-1N фирмы Карл Цейс.

Рентгеноструктурные исследования. Экспериментальный материал для соединений **I**— **III** получен при 100 K в дифрактометре Nonius Kappa CCD на MoK_{α} -излучении (графитовый монохроматор) методом ω -2 θ -сканирования. Параметры элементарной ячейки уточнены по всему массиву экспериментальных данных. Интеграция интенсивностей и их шкалирование было проведено по программе DENZO и SKALEPACK [16].

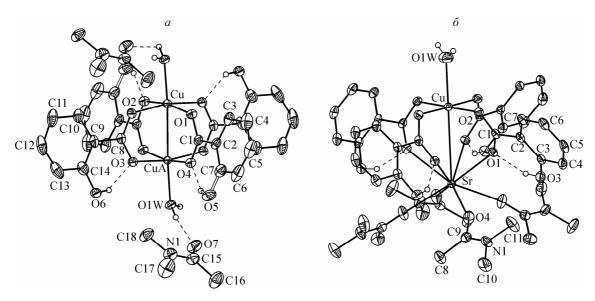
Структуры **I—III** решены прямыми методами и уточнены методом наименьших квадратов в анизотропном полноматричном варианте для неводородных атомов по комплексу программ SHELX-97 [17].

Основные характеристики эксперимента, решения и уточнения структур приведены в табл. 1, основные межатомные расстояния и валентные углы структур приведены в табл. 2

 $\ \, T\ a\ б\ \pi\ u\ ц\ a\ \ \, 2 \\ \, \textit{Основные межатомные расстояния } d\ (\mathring{\mathbb{A}})\ u\ валентные\ углы\ \omega\ (град.)\ s\ структуре\ комплекса\ \mathbf{I}$

Связь	d		Связь		d		Связь	d		Связь	d
Cu1—O1 Cu1—O2 Cu1—O3 ¹ Cu1—O4 ¹	1,967 1,977 1,965	7(1) 5(1)	Cu1— C1—C C2—C	C2 C3	2,126(1) 1,479(3) 1,401(3) 1,409(3)	C	3—C4 5—C6 7—C6 5—C4	1,3 1,3	380(3) 372(4) 397(3) 384(4)	C8—C9 C9—C14 C9—C10 C10—C11	1,485(3) 1,396(3) 1,402(3) 1,385(3)
Угол ω			Угол			ω		Угол		ω	
O3 ¹ —Cu1—O1 8 O4 ¹ —Cu1—O1 16		89 168	5,90(6) 0,95(6) 3,13(5)	O1—Cu1—O2 O3 ¹ —Cu1—O1			89,86(6) 90,90(6) 100,46(5)		O4 ¹ —Cu1—O1 <i>w</i> O1—Cu1—O1 <i>w</i> O2—Cu1—O1 <i>w</i>		98,27(5) 93,55(5) 91,32(5)
O3 ¹ —Cu1–	-O2	168	3,11(5)					-			

 $\ \, \text{ T a б л и ц a } \, \, 3 \\ \, \textit{Основные межатомные расстояния d (Å) и валентные углы } \, \omega \, (\text{град.}) \, \textit{в структуре комплекса II и III}$


Связь	Соединение			Соединение				Соединение		
	<i>d</i> , II (M = Sr)	<i>d</i> , III (M = Ba)	Связь	d, II (M = Sr)		<i>d</i> , III (M = Ba)	Связь	d, II (M = Sr)		d, III (M = Ba)
Cu—O1w	2,334(4)	2,266(2)	C2—C1 1,4		193(3)	1,498(2)	C5—C4	1,382(3)		1,384(3)
Cu—O2	1,952(1)	1,962(1)	C2—C3	1,4	108(3)	1,405(2)	C6—C5	1,387(3)		1,387(3)
M—O1	2,617(1)	2,747(1)	C2—C7	1,398(3)		1,397(2)	C7—C6 1,3		89(3)	1,387(2)
MO4	2,640(1)	2,790(1)	C4—C3	1,401(3)		1,398(2)	C9—C8 1,5		12(3)	1,508(3)
M — $O1w^4$	2,832(4)	2,914(2)								
	Соединение				Соединение			Соединение		
Угол	ω, II (M = Sr)	ω, III (M = Ba)	Угол		ω , II (M = Sr)	ω, III (M = Ba)	Угол		ω, II (M = St	ω, III (M = Ba)
O2 ¹ —Cu—O	2 179,89(8)	179,40(7)	O2 ² —Cu—	-O2	90,0	90,0	O2—Cu—(O1w	89,95(4	90,30(3)

и 3. Данные о структурах депонированы в Кембриджский банк структурных данных (КБСД), № 695771 (для I), № 695772 (для II) и № 695770 (для III).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Кристалл построен из центросимметрических димеров типа $[H_2OCu(C_6H_4(OH)COO)_4 \times CuH_2O]$, ассоциированных посредством водородных связей обеих молекул H_2O с диметилацетамидом (рисунок, a). Параметры водородных связей: Ow—H...O = 2,726(3) и 2,744(3) Å; H...O7 = 1,85 и 1,95 Å; $\angle OH...O$ равен 183 и 167°. Строение димерного комплекса, "фонарика" по [8,14,15], подобно моногидрату ацетата меди(II) [18]. Четыре карбоксильные группы носят мостиковый характер и связывают два атома меди на расстояние 2,638(1) Å. Оно близко к другим подобным расстояниям в моногидрате ацетата меди 2,608(3) [19,18] и комплексах, содержащих замещенные ароматические карбоновые кислоты, 2,595—2,651 Å [10—12, 19—38]. Тетрагонально-пирамидальная координация меди образована четырьмя атомами кислорода четырех карбоксильных групп, среднее расстояние Cu—O 1,967(1) Å, и атомом кислорода молекулы воды с расстоянием 2,126(1) Å. Последнее близко к цитируемым выше гидратным димерным комплексам [20—38] от 2,111—2,170 Å. Атом меди выходит из плоскости четырех

карбоксильных атомов кислорода в сторону H₂O на 0,200 Å. Оба кристаллографически незави-

Молекулярная структура комплекса $\mathbf{I} - a$, молекулярная структура комплексов \mathbf{II} и $\mathbf{III} - \delta$

симые остатки салициловой кислоты выступают как монодепротонированный по карбоксильной группе анион. Гидроксильные группы протонированы, и их атом Н ответственен за внутримолекулярные водородные связи с карбоксильными группами. При этом остатки кислоты расположены так, что гидроксильная группа находится статистически во 2-м и 6-м положениях ароматического кольца с вероятностью 1/2.

В упаковке молекул в кристалле главную роль играют водородные связи молекул воды и сольватных молекул DMAA и π — π -взаимодействие между ароматическими частями димеров.

Подчеркнем, что в **I** молекулы DMAA в координацию к металлу не входят, а выступают как сольватные, играя существенную роль в организации кристаллической структуры.

Соединения **II** и **III** изоструктурны и имеют собственную симметрию двухъядерного кластера C_{4v} (см. рисунок, δ). В отличие от **I** в **II** и **III** молекулы DMAA не являются сольватными, а координируют щелочно-земельные элементы, входящие в димер. Рентгеноструктурные исследования показали, что проведенный в данных условиях синтез приводит к образованию соединений гетерометаллических димеров типа "фонарик", содержащих атомы Cu и Sr или Ва соответственно для **II** и **III**. Ранее нами было показано [39], что возможно внедрить щелочно-земельные ионы в матрицу μ_3 -оксо-карбоксильных комплексов железа. По-видимому, представленные выше условия синтеза способствуют "сборке" димерной молекулы.

В ІІ и ІІІ, как и в І, реализована структура типа "фонарик" с существенным различием двух координационных узлов в ней. Расстояние Си—Sr и Си—Ba в димерах равно 3,618 и 3,740 Å соответственно. Атом меди находится в квадратно-пирамидальной координации с расстояниям Си—O 1,952(1) и Си—O(w) 2,334 Å. При сохранении расстояний в базисе тетрагональной пирамиды в І и ІІ—III, в последних существенно отличается расстояние Си—H₂O (см. табл. 3). Выход меди из базиса в сторону молекулы H₂O равен для II и III 0,002 и 0,010 Å соответственно. Координация щелочноземельных элементов существенно отлична от меди. Координационные числа Sr и Ba равны 8, а координационный полиэдр можно представить как томсоновский куб. Он образован четырьмя атомами кислорода четырех карбоксильных групп (расстояния для II — 2,617(1) Å, III — 2,747(1) Å) и четырьмя атомами кислорода DMAA — 2,640(1) и 2,790(1) Å соответственно. Эти расстояния сопоставимы с найденными в соединении {[FeSr₂(SalH)₂(Sal)₂(NO₃)(DMAA)₄]} $_n$ и {[FeBa₂(Sal)₂(SalH)₃(DMAA)₄(H₂O)]} $_n$ [40], а также в трехъядерных системах {Fe₂SrO} и {Fe₂BaO} [39]. Можно констатировать, что увеличение

координационной ёмкости ионов Sr и Ba, по сравнению с 3d-элементами, приводит к вовлечению в координацию молекул растворителя (DMAA).

В цитируемых выше работах по комплексам Cu—Ca [10, 11] реализовано подобное **II**— **III** координирование Ca.

Структурные функции и геометрия остатков салициловой кислоты в **I—III** одинаковы, они выступают как бидентатный лиганд, присоединенный к металлам по cuh—cuh-типу по карбоксильной группе. Гидроксильная группа протонирована, в координации участия не принимает. Отметим, что в **II** и **III**, так же как и в **I**, гидроксильная группа салицилатного остатка статистически распределена по двум позициям. Структурная роль ОН-группы состоит в стабилизации димера через внутримолекулярную водородную связь О—Н…О с координированными карбоксильными атомами кислорода (см. рисунок, δ).

В формировании кристаллической структуры основную роль играют молекулы H_2O , которые через Ow—H...O (DMAA) организуют кластеры в цепи, направленные вдоль оси c кристалла. Между собой цепи взаимодействуют посредством взаимодействий C— $H...\pi$. Синтезированные соединения доказывают возможность формирования димеров типа моногидрата ацетата меди с включением в него одновременно d- и s-элементов.

Наши и литературные данные показывают, что в димерах данного типа возможна реализация гетероядерной структуры с существенно различными как по электронному строению, так и по геометрическим параметрам атомами металлов, что делает направление перспективным для поиска материалов с необычными магнитными свойствами [41].

СПИСОК ЛИТЕРАТУРЫ

- 1. Тельженская П.Н., Шварц Е.М. // Координац. химия. 1977. 3, № 9. С. 1279.
- 2. Jagner S., Hazell R.G., Larsen K.P. // Acta Crystallogr. 1976. **B32**. P. 548.
- 3. Aggett J., Crossley P., Hancock R. // J. Inorg. Nucl. Chem. 1969. 31, N 1. P. 3241.
- 4. Boons C.H.M., Spala E., Van Dam W. Unsulfurized additive composition comprising salicylates for lubricating oils. Patent EP1489159 (A1) 2004-12-22.
- 5. Amalraj A.J., Sundaravadivelu M.A., Regis P.P., Rajendran S. // J. Anti-Corrosion Meth. Mater. 2001. 48, N 6. P. 371.
- 6. *Masato T., Osamu K., Junji A. et al.* Lubricant composition and driving force transmitting system using same. Patent EP1816183 (A1) 2007-08-08.
- 7. Roth G.J., Calverley D.C. // Blood. 1994. **83**, N 4. P. 85.
- 8. *Порай-Кошиц М.А.* // Итоги науки и техники. Кристаллохимия. М.: ВИНИТИ. 1981. **15**, № 3. С. 129.
- 9. Симонов Ю.А., Яблоков Ю.В., Милкова Л.Н. Кристаллические структуры неорганических соединений. Кишинев: Штиинца, 1974. С. 61.
- 10. Smith G., O'Reilly E.J., Kennard L.C.H., White A.A. // J. Chem. Soc., Dalton Trans. 1985. P. 243.
- 11. *Chen X.-Ming, Mark T.C.* // Polyhedron. 1994. **13**. P. 1087.
- 12. Voroncova V.K., Galeev R.T., Shova S. et al. // Appl. Magn. Reson. 2003. 25. P. 227.
- 13. Tong M.-Liang, Wu Yu-L., Chen X.-Ming et al. // Chem. ResChin. Univ. 1998. 14. P. 230.
- 14. Аблов А.В., Киоссе Г.А., Димитрова Г.И. и др. // Кристаллография. 1974. 19, № 1. С. 168.
- 15. Yoneda K., Uchiyama K., Boettcher B., Inouye Y. // Bull. Chem. Soc. Jpn. 1993. 66. P. 3815.
- 16. Otwinowski Z., Minor W. // Proc. X-ray Diffraction Data Collected in Oscillation Mode, in Methods in Enzymology. Macromolecular Crystallography, Part A / ed. C.W. Carter and R.M. Sweet. N.Y.: Academic Press, 1997. 276. P. 307.
- 17. Sheldrick G.M. SHELX-97, release 97-2. Germany, University of Göettingen, 1998.
- 18. *Nickerk J., Schoening F.R.L.* // Acta Crystallogr. 1953. **6**, N 7. P. 609.
- 19. Karipides A., White C. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1993. 49. P. 1920.
- 20. *Stachova P., Valigura D., Koman M. et al.* // Polyhedron. 2004. **23**. P. 1303.
- 21. *Usubaliev B.T., Musaev F.N., Shnulin A.N., Mamedov Kh.S.* // Koord. Khim. (Russ.)(Coord. Chem). 1982. **8**. **P**. 1400.
- 22. Longguan Z., Kitagawa S., Chag H.-C., Miyasaka H. // Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A. 2000. 342. P. 97.
- 23. Kristiansson O., Tergenius L.-E. // J. Chem. Soc, Dalton Trans. 2001. P. 1415.
- 24. Brzyska W., Wolodkiewicz W., Rzaczynska Z., Glowiak T. // Monatsh. Chem. 1995. 126. S. 285.

- 25. Moncol J., Kavalirova J., Lis T. et al. // Acta Crystallogr., Seact. E: Struct. Rep. Online. 2006. 62. P. M3217.
- 26. Wang W.-H., Liu W.-S., Wang Y.-W. et al. // J. Inorg. Biochem. 2007. 101. P. 297.
- 27. Kawata T., Ohba S., Tokii T. et al. // Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1992. 48. P. 1590.
- 28. Deka K., Barooah N., Sarma R.J., Barwah J.B. // J. Mol. Struct. 2007. 827. P. 44.
- 29. Xue D.-X., Lin Y.-Y., Cheng X.-N., Chen X.-M. // Cryst. Growth Des. 2007. 7. P. 1332.
- 30. Jaskova J., Miklos D., Korabik M. et al. // Inorg. Chim. Acta. 2007. 360. P. 2711.
- 31. PenGong Chen, Shan GaO, Ng S.W. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2007. 63. P. m2617.
- 32. Du M., Bu X.-H., Guo Y.-M., Ribas J. // Chem. Eur. J. 2004. 10. P. 1345.
- 33. Yang Y.-Y., Chen X.-M., Ng S.W. // Aust. J. Chem. 1999. 52. P. 983.
- 34. Xiang S.-C., Hu S.-M., Zang J.-J. et al. // Eur. J. Inorg. Chem. 2005. P. 2706.
- 35. Cui Y., Zeng F.-K., Yan D.-C. et al. // Jiegou Huaxue. Chin. J. Struct. Chem. 1998. 17. P. 5.
- 36. *Gao F.*, *Wang R.-Y.*, *Jin T.-Z. et al.* // Polyhedron. 1997. **16**. P. 1357.
- 37. Wang L.-Y., Igarashi S., Yukawa Y. et al. // Dalton Trans. 2003. P. 2318.
- 38. Wang L.-Y., Igarashi S., Yukawa Y. et al. // Chem. Lett. 2003. 32. P. 202.
- 39. Prodius D., Turta C., Mereacre V. et al. // Polyhedron. 2006. 25. P. 2175.
- 40. Горинчой В.В., Туртэ К.И., Симонов Ю.А. и др. // Журн. координац. химии. 2009. **35**, № 4. С. 283 290.
- 41. Geru I.I. // Appl. Magn. Res. 2000. 19. P. 563.