УДК 539.194:541.65

А.Н. ПАНКРАТОВ, А.Е. ЩАВЛЕВ

ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ, ИНДУКТИВНЫЕ И МЕЗОМЕРНЫЕ ПАРАМЕТРЫ АТОМНЫХ ГРУПП: ПОЛУЭМПИРИЧЕСКАЯ КВАНТОВОХИМИЧЕСКАЯ ОЦЕНКА

Установлена зависимость электроотрицательности, значений индуктивного параметра і, мезомерных дипольных моментов заместителей от характеристик электронной структуры органических молекул, рассчитанных методами CNDO/2, INDO, MINDO, MINDO/3, MNDO, AM1. Показана возможность простой полуэмпирической квантовохимической оценки электроотрицательности, индуктивных и мезомерных свойств атомных групп.

Электроотрицательность (ЭО) атомных групп [1], их индуктивные и мезомерные эффекты [2, 3], выражаемые, в частности, параметрами, следующими из принципа линейности свободных энергий [4], исключительно важны для описания химической связи, межмолекулярных взаимодействий физикохимических свойств веществ и молекул, исследования реакционной способности, катализа, сольватации, экстракции [5—7].

Цель работы — выяснение возможности полуэмпирической квантовохимической оценки ЭО, индуктивных и мезомерных характеристик атомных групп X на примерах молекул CH_3X , XCH_2COOH , $\emph{h-}C_5H_{11}X$, C_6H_5X , $4-XC_6H_4NO_2$, 2,6-дизамещенных пиридинов $C_5H_3NX_2$ и катионов N-метилпиридиния $C_5H_3N^{\dagger}CH_3X_2$.

Электронная структура молекул названных соединений рассчитана методами ССП МО ЛКАО CNDO/2 [8], INDO [9], MINDO [10,11], MINDO/3 [12] по программам комплексов ВИКИНГ [13] и GEOMO [14] для фиксированных пространственных параметров. Расчеты методами MNDO [15,16] и AM1 [17,18] проводили по программам из пакета MOPAC [19] с полной оптимизацией геометрии.

Регрессионный анализ осуществляли для уровня доверительной вероятности 0,95.

В качестве объективного критерия суммарной электроноакцепторной способности и ЭО заместителей X в молекулах CH_3X , XCH_2COOH , μ - $C_5H_{11}X$, C_6H_5X , 4- $XC_6H_4NH_2$, 4- $XC_6H_4NO_2$, $C_5H_3NX_2$, $C_5H_3N^+CH_3X_2$ нами применена сумма (Σ) зарядов на атомах фрагментов CH_3 , CH_2COOH , C_5H_{11} , C_6H_5 , $C_6H_4NH_2$, $C_6H_4NO_2$, C_5H_3N , $C_5H_3N^+CH_3$. Для насыщенных систем CH_3X , XCH_2COOH , μ - $C_5H_{11}X$ указанная величина является характеристикой эффекта ЭО групп X. Марриотт, Рейнольдс и др. при рассмотрении молекул HX использовали аналогичный индекс в рамках подходов 6- $31G^*//4$ -31G [20] и 6- $31G^*//6$ - $31G^*$ [20, 21]. Сравнительный анализ электроноакцепторных свойств различных групп с использованием такого интегрального показателя достаточно корректен, так как дальность действия заместителей изменяется в ряду соединений незначительно и нерегулярно [22, 23].

Известно, что эффект ЭО атомных групп распространяется не более чем на три химические связи [2, 22]. В то же время мезомерный эффект затухает медленнее (передается через три чередующиеся двойные связи, даже если в сопряжении не участвуют вакантные орбитали или отрицательно заряженные атомы) [3]. Видимо, поэтому авторы работы [24] указывают, что заряд на *пара*-углеродном атоме кольца (q_{napa}) может служить мерой $p\pi$ -сопряжения в ароматических молекулах. В принципе указанная величина может отражать и $\pi\pi$ -сопряжение, т.е. описывать мезомерные свойства как n-доноров, так и π -доноров, так и π -донорных групп.

Нами установлены 90 линейных корреляций значений ЭО, индуктивного параметра і атомных групп, вычисляемого по формуле [25]:

$$t = (Z^* + 1)/n^*$$

где Z^* — эффективный заряд валентной оболочки; n^* — эффективное главное квантовое число с суммами зарядов на атомах соответствующих молекулярных фрагментов, мезомерного дипольного момента (μ_m) заместителей X (представляющего собой векторную разность групповых моментов производных бензола и метана, а для нерегулярных групп — компоненту этой разности, приходящуюся на направление связи C - X [4]) с величинами q_{napa} .

Рассмотрены значения ЭО, полученные разными экспериментальными (ИК, ЯМР спектроскопия, термохимия, анализ энергий диссоциации) и теоретическими методами.

Некоторые из корреляционных уравнений представлены в табл. 1—3.

При наличии упомянутых зависимостей недостатки полуэмпирических методов не ограничивают их применимости для оценки соответствующих свойств. Кроме того, известно, что метод CNDO/2 позволяет получать корректные данные о распределении электронной плотности в С-, Н-, N-, О-, F-, Cl-содержащих органических молекулах [8, 13, 22, 23, 44, 45]. Он удачно параметризован для изучения индукционного эффекта [46, 47]. Критика схемы CNDO/2 с позиций анализа электростатической компоненты изменения конформационной энтальпии, рассчитанной из посылки о взаимодействии точечных зарядов [48], неубедительна ввиду неадекватности модели. Многочисленные данные ЯМР ¹³С, ЯКР, фотоэлектронной спектроскопии, *ab initio* расчетов подтверждают корректность данных, полученных методом CNDO/2 [44, 45]. Результаты CNDO/2 и *ab initio* расчетов электронных влияний согласуются между собой [49].

Найденные линейные зависимости подтверждают корректность полученных нами ранее [22] рядов электроноакцепторных и электронодонорных свойств заместителей в органических молекулах.

Открыта возможность простой оценки ЭО, индуктивных и мезомерных свойств атомных групп полуэмпирическими методами квантовой химии (в том числе на уровне CNDO/2) из корреляций названных величин с индексами электронной структуры молекул (Σ и q_{nupa}). Используемые обычно константы, вытекающие из принципа линейности свободных энергий, обладают рядом ограничений (множественность наборов, неоднозначность интерпретации и др.). Оцениваемые в настоящей работе величины (ЭО, ι , ι , ι) в значительной степени лишены указанных недостатков, поскольку выражаются через характеристики, имеющие отчетливый физический смысл: Σ , q_{nupa} , Z^* , n^* , групповые моменты.

Установленные количественные соотношения позволят осуществлять молекулярный дизайн органических соединений разных классов с регулируемыми электронными эффектами, ЭО заместителей. Априорная оценка названных молекулярных свойств методами квантовой химии может служить основанием для эксперт-

 $\ \, T\ a\ б\ \pi\ u\ \mu\ a\ \ 1$ Примеры корреляций значений электроотрицательности (χ) с суммами (Σ) зарядов на атомах фрагментов R молекул RX и RX2, рассчитанные полуэмпирическими методами квантовой химии ($\chi=B\Sigma+A$)

Набор заместителей Х	R	Метод	Способ оценки электроотрицательности	Литера- тура	В	A	r
1	2	3	4	5	6	7	8
CH ₃ , C ₆ H ₅ , CN, OH	C ₅ H ₃ N	CNDO/2	Расчет по Полингу [26] из энергий диссоциации соединений R—H, R—R, H—H		$8,52 \pm 1,68$	$1,58 \pm 0,20$	0,9979
CH ₃ , CH=CH ₂ , NH ₂ , OH, F	СН₃	CNDO/2			$3,95 \pm 1,15$	2,41 ± 0,11	0,9877
CH ₃ , CH=CH ₂ , NH ₂ , OH, F	CH ₂ COOH	CNDO/2	Тот же	[28]	$3,60 \pm 0,98$	$2,52 \pm 0,09$	0,9892
CH ₃ , CH=CH ₂ , NH ₂ , OH, F	C_6H_5	CNDO/2	DO/2 »		$3,72 \pm 1,31$	$2,42 \pm 0,14$	0,9821
CH ₃ , CH=CH ₂ , NH ₂ , OH, F	C ₆ H ₄ NH ₂	CNDO/2	DO/2 »		$3,84 \pm 1,25$	$2,38 \pm 0,14$	0,9847
CH ₃ , CH=CH ₂ , NH ₂ , OH, F	C_6H_5	INDO	»	[28]	$3,18 \pm 0,95$	$2,41 \pm 0,12$	0,9871
CH ₃ , CH=CH ₂ , NH ₂ , OH, F	C_6H_5	MINDO/3	»	[28]	$2,23 \pm 0,80$	$2,43 \pm 0,14$	0,9815
CH ₃ , NH ₂ , N(CH ₃) ₂ , OH, OCH ₃	CH ₃	CNDO/2	Расчет методом итераций для насыщенных структур	[29, 30]	$8,34 \pm 1,24$	$2,55 \pm 0,09$	0,9967
CH ₃ , NH ₂ , N(CH ₃) ₂ , OH, OCH ₃	CH ₂ COOH	CNDO/2	Тот же	[29, 30]	$7,48 \pm 1,52$	$2,79 \pm 0,08$	0,9939
CH ₃ , CH=CH ₂ , CCH, COOH, CN, NH ₂ , OH	СН3	CNDO/2	Вычисление с использованием модифицированной формулы Горди [31], связывающей χ атома с числом валентных электронов и ковалентным радиусом	[32]	8,48 ± 1,66	$2,44 \pm 0,09$	0,9858

					Пролол	жение та (5л. 1
1	2	3	4	5	6	7	8
CH ₃ , CH=CH ₂ , CCH, COOH, CN, NH ₂ , OH	CH ₂ COOH	CNDO/2	Тот же	[32]	$7,54 \pm 1,25$	$2,68 \pm 0,05$	0,9898
H, CH ₃ , CN, OH, F	CH ₃	AM1	Оценка по сводной системе, базирующейся на термохимических данных		9,24 ± 1,28	$2,67 \pm 0,26$	0,9769
H, CH ₃ , OH, F	C ₅ H ₁₁	AM1	Расчет из неэмпирической электростатической модели [34]		$8,28 \pm 1,28$	$2,51 \pm 0,15$	0,9987
H, CH ₃ , CH=CH ₂ , CCH, CHO, COOH, CN, NH ₂ , NHCH ₃ , N(CH ₃) ₂ , OH, OCH ₃ , OC ₆ H ₅ , NO	CH ₃	CNDO/2			$9,98 \pm 2,08$	$2,54 \pm 0,13$	0,9493
H, CH ₃ , CH=CH ₂ , CCH, CHO, COOH, CN, NH ₂ , NHCH ₃ , N(CH ₃) ₂ , OH, OCH ₃ , OC ₆ H ₅ , NO	CH₂COOH	CNDO/2	Тот же	[36, 37]	9,43 ± 1,92	$2,82 \pm 0,09$	0,9513
H, CH ₃ , CH=CH ₂ , CCH, CHO, COOH, CN, NH ₂ , NHCH ₃ , N(CH ₃) ₂ , OH, OCH ₃ , OC ₆ H ₅ , NO	C ₆ H ₅	CNDO/2	» [$9,78 \pm 2,48$	$2,48 \pm 0,17$	0,9277
CH ₃ , CH=CH ₂ , CCH, CN, NH ₂ , OH, NO	C ₆ H ₄ NH ₂	CNDO/2	»	[36, 37]	$9,22 \pm 2,63$	$2,27 \pm 0,09$	0,9705
CH ₃ , CH=CH ₂ , CCH, CHO, COOH, CN, NH ₂ , NHCH ₃ , N(CH ₃) ₂ , OH, OCH ₃	CH ₃	CNDO/2	Расчет χ связывающей атомной орбитали в молекуле с локализованными связями через χ электронейтрального атома и орбитальные вклады в его заряд		$14,78 \pm 2,50$	2,49 ± 0,14	0,9758
CH ₃ , CH=CH ₂ , CCH, CHO, COOH, CN, NH ₂ , NHCH ₃ , N(CH ₃) ₂ , OH, OCH ₃	CH₂COOH	CNDO/2	Тот же	[38, 39]	$13,47 \pm 2,25$	$2,90 \pm 0,09$	0,9764
CH ₃ , CH=CH ₂ , CCH, CHO, COOH, CN, NH ₂ , NHCH ₃ , N(CH ₃) ₂ , OH, OCH ₃	C ₆ H ₅	CNDO/2	»	[38, 39]	$14,14 \pm 3,57$	$2,44 \pm 0,22$	0,9482

CH ₃ , CH=CH ₂ , CCH, CHO, COOH, CN, NH ₂ , OH	C ₆ H ₄ NH ₂	CNDO/2	»	[38, 39]	$15,16 \pm 3,06$	$2,21 \pm 0,20$	0,9801
CH ₃ , CH=CH ₂ , CCH, CHO, COOH, CN, NH ₂ , OH	C ₅ H ₃ N	CNDO/2	»	[38, 39]	$7,55 \pm 1,64$	$2,46 \pm 0,17$	0,9771
CH ₃ , CH=CH ₂ , CCH, CHO, COCH ₃ , COOH, CN, NH ₂ , OH, NO, NO ₂ , F	СН3	MINDO	Pасчет χ _G ab initio с использованием принципа выравнивания электроотрицательности в рамках анализа заселенностей по Малликену		14,91 ± 3,25	$8,99 \pm 0,53$	0,9552
CH ₃ , CH=CH ₂ , CCH, CHO, COOH, CN, NH ₂ , OH, NO, NO ₂ , F	C_6H_5	MINDO	Тот же	[40]	$15,92 \pm 3,63$	$9,04 \pm 0,57$	0,9572
H, CH ₃ , CH=CH ₂ , CCH, CHO, COCH ₃ , COOH, CN, NH ₂ , NHCH ₃ , N(CH ₃) ₂ , OH, OCH ₃ , NO	CH ₂ COOH	CNDO/2	Расчет χ_G^0 <i>ab initio</i> с использованием принципа выравнивания электроотрицательности в рамках	[40]	268,43 ± 67,91 (πο Ma 90,20 ± 22,81	$17,55 \pm 2,81$ лликену) $5,69 \pm 0,94$	0,9344
			анализа заселенностей по Малликену		(по П	олингу)	
CH ₃ , COOH, OH, NO ₂ , F	C ₅ H ₁₁	MINDO	Расчет <i>ab initio</i> в базисе 4-31G зарядов на атоме водорода 1 - q _H в молекулах НХ как меры ЭО групп X	[37]	$1,16 \pm 0,25$	$0,151 \pm 0,049$	0,9930
CH ₃ , CHO, COOH, CN, NH ₂ , OH, NO ₂ , F	C_6H_5	MINDO	Тот же	[37]	$1,23 \pm 0,13$	$0,133 \pm 0,022$	0,9944
CH ₃ , COOH, OH, NO ₂ , F	C ₅ H ₁₁	MINDO	Расчет <i>ab initio</i> в базисе 6-31G зарядов на атоме водорода 1 - q _H в молекулах НХ как меры ЭО групп Х	[37]	$1,20 \pm 0,04$	$0,150 \pm 0,008$	0,9998
CH ₃ , CHO, COOH, CN, NH ₂ , OH, NO ₂ , F	C_6H_5	MINDO	Тот же	[37]	$1,27 \pm 0,16$	$0,130 \pm 0,027$	0,9922
H, CH ₃ , CH=CH ₂ , CCH, CHO, COOH, CN, NH ₂ , OH, OCH ₃ , NO,	CH ₃	CNDO/2	Расчет χ на основе теории молекулярной структуры Бейдера [41] с	[42]	26,96 ± 6,69	7,26 ± 0,58 лликену)	0,9366
NO ₂ , F			позиций анализа топологических		` i	1	0,9371
			свойств распределения электронной плотности и критической точки связи		9,08 ± 2,24 (по П	2,23 ±0,19 олингу)	0,9371

Окончание табл. 1

1	2	3	4	5	6	7	8
H, CH ₃ , CH=CH ₂ , CCH, CHO, COOH, CN, NH ₂ , OH, OCH ₃ , NO,	CH ₂ COOH	CNDO/2	Тот же	[42]	25,00 ± 6,07 (по Ма	$8,00 \pm 0,45$ лликену)	0,9391
NO_2 , F					$8,42 \pm 2,03$	$2,48 \pm 0,15$	0,9396
					(по П	олингу)	
H, CH ₃ , CH=CH ₂ , CCH, CHO,	CH_3	INDO	»	[42]	$21,56 \pm 5,49$	$7,17 \pm 0,58$	0,9404
COOH, CN, NH_2 , OH, NO, NO_2 , F					(по Ма	лликену)	
					$7,26 \pm 1,84$	$2,20 \pm 0,19$	0,9407
					(по П	олингу)	
H, CH ₃ , CH=CH ₂ , CCH, CHO,	CH_3	MINDO	»	[42]	$14,65 \pm 2,72$	$7,09 \pm 0,44$	0,9669
COOH, CN, NH_2 , OH, NO, NO_2 , F					(по Ма	лликену)	
					$4,93 \pm 0,92$	$2,18 \pm 0,15$	0,9664
					(по П	олингу)	
$H, CH_3, COOH, OH, NO_2, F$	C_5H_{11}	MINDO	»	[42]	$17,63 \pm 0,90$	$6,87 \pm 0,16$	0,9993
					(по Ма	лликену)	
					$5,94 \pm 0,31$	$2,10\pm0,06$	0,9993
					(по П	олингу)	
H, CH ₃ , CH=CH ₂ , CCH, CHO,	C_6H_5	INDO	»	[42]	$20,06 \pm 5,58$	$7,16 \pm 0,63$	0,9301
COOH, CN, NH_2 , OH, NO, NO_2 , F					(по Малликену)		
					$6,76 \pm 1,86$	$2,20 \pm 0,19$	0,9311
					(по П	олингу)	
H, CH ₃ , CH=CH ₂ , CCH, CHO,	C_6H_5	MINDO	»	[42]	$16,82 \pm 2,15$	$6,88 \pm 0,32$	0,9839
COOH, CN, NH_2 , OH, NO, NO_2 , F					`	лликену)	
					$5,66 \pm 0,72$	$2,11 \pm 0,11$	0,9839
					(по П	олингу)	

Таблица 2 Зависимость между значениями индуктивного параметра ι [43] и суммами (Σ) зарядов на атомах фрагментов R молекул RX ($\iota = B\Sigma + A$)

Набор заместителей X	R	Метод	В	A	r
$H, CH_3, CH=CH_2,$	CH ₃	CNDO/2	$5,16 \pm 0,84$	$2,23 \pm 0,07$	0,9682
ССН, СНО, СООН,	CH ₂ COOH	CNDO/2	$4,78 \pm 0,78$	$2,37 \pm 0,05$	0,9679
$CN, NH_2, NHCH_3,$	C_6H_5	CNDO/2	$4,96 \pm 1,14$	$2,20 \pm 0,09$	0,9398
N(CH ₃) ₂ , OH, OCH ₃ , OC ₆ H ₅ , F					
H, CH ₃ , COOH, OH, F	C_5H_{11}	CNDO/2	$5,14 \pm 1,48$	$2,05 \pm 0,17$	0,9880
$H, CH_3, CH=CH_2,$	C ₆ H ₄ NH ₂	CNDO/2	$5,07 \pm 1,33$	$2,13 \pm 0,12$	0,9519
CCH, CHO, COOH,	CH ₃	INDO	$4,08 \pm 1,12$	$2,21 \pm 0,11$	0,9477
CN, NH ₂ , OH, F	C_6H_5	INDO	$4,13 \pm 1,19$	$2,20 \pm 0,11$	0,9431

Таблица 3

Зависимость между значениями мезомерных дипольных моментов μ_m [4] и зарядами (q_{napa}) в пара-положениях ароматических колец молекул 4-YC₆H₄X по данным CNDO/2-расчетов $(\mu_m = Bq_{napa} + A)$

	(1 ///	mapa		
Набор заместителей Х	Y	В	A	r
CH ₃ , COCH ₃ , CN, NH ₂ , NO ₂ , F	NH ₂ NO ₂	$-36,30 \pm 8,38$ $-33,95 \pm 7,02$	$4,97 \pm 1,15$ $1,01 \pm 0,24$	-0,9865 -0,9891

ного решения о целесообразности синтеза, порой трудоемкого, длительного, требующего жестких условий и дорогих реактивов.

Исследование, описанное в настоящей публикации, стало возможным отчасти за счет грантов № d96-16 и № d97-1381, полученных доктором химических наук профессором А.Н. Панкратовым от международной Соросовской Программы Образования в Области Точных Наук.

СПИСОК ЛИТЕРАТУРЫ

- *Черкасов А.Р., Галкин В.И., Зуева Е.М., Черкасов Р.А.* // Успехи химии. 1998. **67**, № 5. – C. 423 – 441.
- Верещагин А.Н. Индуктивный эффект / Отв. ред. Б.А. Арбузов. М.: Наука, 1987. 326
- Днепровский А.С., Темникова Т.И. Теоретические основы органической химии. Л.: Химия, 1991. – 560 с.
- Пальм В.А. Введение в теоретическую органическую химию. М.: Высш. шк., 1974. – 446 c.
- Воловик С.В., Станинец В.И., Зефиров Н.С. // Докл. АН (Россия). 1993. 330, № 3. -C.321 - 323.
- Урусов В.С. // Журн. структур. химии. 1994. 35, № 1. С. 111 127.
- Розен А.М., Крупнов Б.В. // Успехи химии. 1996. 68, № 11. С. 1052 1079. 7.
- 8. *Pople J.A.*, *Segal G.A.* // J. Chem. Phys. 1966. **44**, N 9. P. 3289 3296.
- Pople J.A., Beverigde D.L., Dobosh P.A. // Ibid. 1967. 47, N 6. P. 2026 2033.
- Baird N.C., Dewar M.J.S. // J. Phys. Chem. 1969. 50, N 3. P. 1262 1274.
 Baird N.C., Dewar M.J.S., Sustmann R. // Ibid. 1969. 50, N 3. P. 1275 1280.
- 12. Bingham R.C., Dewar M.J.S., Lo D.H. // J. Amer. Chem. Soc. 1975. 97, N 6. -P. 1285 - 1293.
- 13. Квантовохимические методы расчета молекул / Г.А. Щембелов, Ю.А. Устынюк, В.М. Мамаев и др. – М.: Химия, 1980. – 256 с.
- 14. Rinaldi D. // Comput. Chem. 1977. 1, N 2. P. 109 114.
- 15. Dewar M.J.S., Thiel W. // J. Amer. Chem. Soc. 1977. 99, N 15. P. 4899 4917.

- 16. Dewar M.J.S., Rzepa H.S. // Ibid. 1977. **100**, N 1. P. 58 67.
- 17. Dewar M.J.S., Zoebisch E.G., Healy E.F., Stewart J.J.P. // Ibid. 1985. 107, N 13. P. 3902 3909.
- 18. Dewar M.J.S., Zoebisch E.G. // J. Mol. Struct. Theochem. 1988. 180. P. 1 21.
- Stewart J.J.P. MOPAC, A Semi-Empirical Molecular Orbital Program // QCPE. 1983.
 Program N 455.
- Reynolds W.F., Taft R.W., Marriott S., Topsom R.D. // Tetrahedron Lett. 1982. 23, N 10. – P. 1055 – 1058.
- Marriott S., Reynolds W.F., Taft R.W., Topsom R.D. // J. Organ. Chem. 1984. 49, N 6. – P. 959 – 965.
- 22. Pankratov A.N. // Ind. J. Chem. 1995. 34B, N 8. P. 689 694.
- 23. Pankratov A.N., Shchavlev A.E. // Monatsh. Chem. 1998. **129**, N 10. S. 1007 1017.
- 24. *Берестова С.С., Терехова М.И., Бондаренко Н.А. и др. //* Журн. общ. химии. 1982. **52**, № 3. С. 513 516.
- 25. Inamoto N., Masuda Sh. // Tetrahedron Lett. 1977. N 37. P. 3287-3290.
- Паулинг Л. Природа химической связи / Пер. с англ. М.Е. Дяткиной; Под ред. Я.К. Сыркина. М.;Л.: Госхимиздат, 1947. 440 с.
- 27. Constantinides E. // Proc. Chem. Soc. 1964. Sept. P. 290.
- 28. Ferreira R. // Trans. Faraday Soc. 1963. 59, Pt. 5, N 485. Pt. 1064 1074.
- Gallais F., Voigt D., Labarre J.-F. // Compt. Rend. Acad. Sci. Paris. 1965. 260, N 1. P. 128 – 130.
- Gallais F., Voigt D., Labarre J.-F. // J. Chim. Phys. et Phys.-Chim. Biol. 1965. 62, N 7–8. – P. 761 – 766.
- 31. *Gordy W.* // Phys. Rev. 1946. **68**, N 11 12. P. 604 607.
- 32. Chandra S., Chandra S. // Tetrahedron. 1966. 22, N 10. P. 3403 3407.
- 33. *Бацанов С.С.* Электроотрицательность элементов и химическая связь. Новосибирск: Изд-во СО АН СССР, 1969. 196 с.
- 34. Boyd R.J., Marcus G.E. // J. Chem. Phys. 1981. 75, N 11. P. 5385 5388.
- 35. Luo Yu-Ran, Benson S. W. // J. Phys. Chem. 1990. 94, N 2. P. 914 917.
- 36. Inamoto N., Masuda Sh. // Chem. Lett. 1982. N 7. P. 1003 1006.
- 37. Inamoto N., Masuda Sh., Niwa J. // J. Phys. Org. Chem. 1990. 3. P. 209 218.
- 38. *Mullay J.* // J. Amer. Chem. Soc. 1985. **107**, N 25. P. 7271 7275.
- 39. *Mullay J.* // Structure and Bonding. 1987. **66**. P. 1 25.
- 40. Datta D. // Proc. Ind. Acad. Sci. (Chem. Sci.). 1988. 100, N 6. P. 549 557.
- 41. Bader R.F.W. // Chem. Rev. 1991. 91, N 5. P. 893 928.
- 42. Hati S., Datta D. // J. Comput. Chem. 1992. 13, N 7. P. 912 918.
- 43. *Inamoto N., Masuda Sh.* // Chem. Lett. 1982. N 7. P. 1007 1010.
- 44. Clark D. T., Kilcast D. // J. Chem. Soc. A. 1971. N 21. P. 3286 3290.
- 45. Politzer P., Whittenburg S.L., Wärnheim T. // J. Phys. Chem. 1982. **86**, N 14. P. 2609 2613.
- Гинейтите В.Л., Шатковская Д.Б. // Журн. структур. химии. 1984. 25, № 5. С. 152 – 155.
- 47. Шатковская Д.Б., Гинейтите В.Л. // Там же. 1988. 29, № 1. С. 21 25.
- 48. Stolow R.D., Samal P.W., Giants Th.W. // J. Amer. Chem. Soc. 1981. 103, N 1. P. 197 199.
- 49. Hehre W.J., Pople J.A. // Ibid. 1970. 92, N 8. P. 2191 2197.

Саратовский государственный университет им. Н. Г. Чернышевского E-mail: PankratovAN@info.sgu.ru Статья поступила 20 июля 1998 г.