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PARAMETRIC STUDY OF THE DYNAMIC
JWL-EOS FOR DETONATION PRODUCTS'!

The JWL equation of state describing the adiabatic expansion of detonation pro-
ducts is revisited to complete the description of the principal eigenvalue, to reset the
secondary eigenvalue to produce a well-behaved adiabatic gamma profile, and to nor-
malize the characteristic equation of state in terms of conventional parameters having
a clear experimental interpretation. This is accomplished by interjecting a dynamic flow
condition concerning the value of the relative specific volume when the particle velocity
of the detonation products is zero. In addition, a set of generic parameters based on the
statistical distribution of the primary explosives making up the available data base is
presented. Unlike theoretical and statistical mechanical models, the adiabatic gamma
function for these materials in seen to have a positive initial slope in accord with ex-
perimental findings.

Introduction

Equations of state of detonation products are mathematical expressions
which characterize particle streamlines following the chemical reaction
zone. They are used by research groups and laboratories to predict, simulate,
and compare natural flow trajectories associated with energetic materials.

Presently, there are several renowned equations of state (EOS) for the
detonation products. Each of these state equations was developed speci-
fically to satisfy certain criteria and is used primarily by its originator.
When it comes to choosing one EOS over another there are no clearly esta-
blished rules. The choice usually is based on the ability to accommodate
the algorithm into a computer program and its adaptability to desired chan-
ges and modifications. As an example, in his early review of compressibi-
lity of water, MacDonald [1] described four different polynomial and se-
ven exponential equations of state that were applicable to solids and li-
quids. While demonstrating their usefulness he found none of them to be
superior to any of the others.

! Work performed under the auspices of the U. S. Department of Energy by the.
Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.
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The Jones — Wilkins — Lee equation of state [2—4] (JWL-EOS)
is an empirical mathematical expression used at this Laboratory and else-
where to describe the pressure — volume relationship associated with
chemical detonation products. It is used to calculate the state of the pro-
ducts as they expand from a certain high-pressure, high-density condition
just after the chemical reaction to some terminal state at normal pressure and
gaseous density. The JWL-EOS comprises two Murnaghan and one Tait
equation of state. It represents pressure as a function of volume and energy
P = P(V, E). In this normal form it satisfies the mechanics of the detonic
flow problem but is incomplete for the thermodynamic description of the
system and does not take into account explicit chemistry. The JWL is an
EOS that is based on the Gruneisen principle but is fitted to experimental
data. As with most other empirical equations of state, viscosity, conducti-
vity, friction and body forces such as gravity are considered secondary ef-
fects. These transport properties are so small compared to the principal
momentum of the system that they can easily be neglected.

The advantages of the JWL-EOS is its practical nature and the fairly
large data base of experimental and popular explosives it supports. In addi-
tion, it is formulated on the basis of its two well-recognized predecessors:
Murnaghan and Tait. However, after reviewing the literature on the sub-
ject and subjecting the JWL-EOS to a rigorous mathematical scrutiny, we
recognized that the original set of coefficients and eigenvalues can be de-
termined from well-defined boundary values associated with static and dy-
namic conditions. Thus, in revisiting the subject of the JWL-EOS it is the
purpose of this communication to introduce a dynamic condition into the de-
velopment of this equation which would not only eliminate guessing the
principal eigenvalue but would also reduce the leading pressure coefficients
to their primary dependents: the eigenvalues, the relative specific volume
at the Chapman — Jouguet (CJ) plane, and the value of the reduced inter-
nal energy. This study will also reveal the small variance in governing pa-
rameters among various explosive systems. Ii will also show the effect of
small changes in these parameters on the gamma profile, the most sensitive
parameter of the detonic system.

The JWL-EOS

Parametric studies are usually carried out with normalized equations
where all parameters appear in a nondimensional form. The JWL-EOS,
as is familiar to all its users, is a mixed-dimensional equation, and for this
study it must be brought into a normalized form. However, before doing
that, let us first briefly review the relationship between various forms of
this equation when the parameters aund coefficients still represent dimen-
sional quantities.

The most general form of the original JWL pressure algorithm, with
all its boundary and initial (CJ) conditions appropriate to the dynamic
detonic flow, is written as

+Bl1—5wxle * +o+. (1)

This expression relates pressure P to the relative specific volume V =
-= v/vy and energy E. Here, specific volume v, is the inverse of the initial
density of the explosive, and the specific volume v is the independent va-
riable. The energy term E contains chemical bond energy as well as kinetic
energy associated with the momentum aspect of the flow. 4, B, and C are
the pressure coefficients, R, and R, are the principal and secondary eigen-
values, respectively, and o is the fractional part of the normal Tait equation
adiabatic exponent.
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To simplify Eqn. 1 the energy dependance can be consolidated by im-
posing the restriction that the flow be adiabatic. Then, from the first law

of thermodynamics,
dE = Tds — Pdv, (2)

neglecting entropy changes, we find
dE = —Pdv. (3)

As a consequence, this also means that the temperature 7 plays no signi-
ficant role in characterizing the expansion process following the release
of chemical energy within the reaction zone of the detonation wave. Diffe-
rentiating Eqn. 1, applying the restricting condition of Eqn. 3, and solving
the resulting differential equation by quadrature, one can show that the
usual isentropic form of the JWL-EOS becomes

P = A Y 4 g 4 cy—ate) (4)

where the two inside terms are Murnaghan expressions and the last term
is the usual Tait expression. By integrating Eqn. 3, with Eqn. 4 substituted
for P, one gets the expression for energy
_ A RV B —RyV c
- Rl e + R2 e + [P (5)
The above expressions for pressure and energy are applicable along the isen-
tropic release adiabat as well as at the initial CJ state point. In addition,
by introducing the tangency condition at the CJ point where the isentrope
is tangent to the Rayleigh line
dP \
v Jey

we can get a set of three equations (4), (9), and (6) which can be solved to de-
termine the three pressure coefficients 4, B and C:

V2R2

PoD?, (6)
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— P,(R,+R)+ E.R R, +op D _
C — (1 T Ry) + ERR, 0 V§+°) (7c)

1+ o0~V (R +R,)+ V2R R,

Here the subscript 0 denotes initial conditions and the subscript ¢ desig-
nates the Chapman — Jouguet state, which is a physically and mathema-
tically acceptable transition point between a steady wave (the reaction
zone) and the isentropic release wave, also known as the Taylor wave.

Up to this point all the expressions were written in the customary JWI,
mixed-dimensional form. To carry out our parametric study, these expres-
sions must be transformed into a nondimensional format. The most useful
normalization factor is the «dynamic pressure» p,D? (Eqn. 6), which nor-
malizes both pressure and energy. Thus, when so normalized all of the pa-
rameters become nondimensional and are designated with a tilde (~) above
them, i. e.,

F = Flo,D%. (8)

Transforming the isentropic JWL-EOS (Eqn. 4) into its nondimen-
sional form, we get
~ R

D= ae Y 4 gV 4oy, (9)
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where coefficients 4, B and C from Eqn. 7 become

2
vers
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(10a)
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C= (140 —V. (R, R. VIRR,2 Vv (10c)

During this transformation we have also made use of the nondimensional
identities described earlier [5] for the CJ state, namely:

P,=1—7V, (11)
and

E.—Ey+ P (1—V)2=E,+ P2/2, (12)

where the energy value of the CJ state has been augmented by the flow con-
dition and now represents the sum of the normal energy density and the ki-
netic energy. These identities are the ordinary jump conditions. They allow
us to suppress pressure dependency at the CJ plane by substituting pressure
terms with the more important independent relative specific volume
term V..

Two important features about the normalized JWL-EOS can be noted
at this point:

When Eqn. 9 is evaluated at the CJ point it must reduce to Eqn. 11.
This means that the initial condition of the EOS is completely independent
of energy, a point that will be verified later. The normalized pressure coef-
ficients A, B, and C depend not only on the two primary explosive parame-
ters ¥, and E, but also on the entire set of eigenvalues R,, R, and o.

The values of V, and E,, along with their variances for the explosives
taken from the available data base [6], have already been established [5].
For thirty-one different explosives the values of V, and E, are 0,7347 +
+ 0.0065 and 0,0826 -+ 0,0125, respectively. For greater accuracy, the
energy value can be considered density-dependent and can be written as
E, = 0,204—0,0734%p,.

The Eigenvalues

The beginning of the adiabatic expansion process for detonation pro-
ducts, initially accelerated into motion in the reaction zone, starts a de-
celeration phase at the CJ plane. These particles will quickly slow down,
stop. and, depending on the rear boundary, will most likely reverse their
direction as the products expand. For a point-initiated spherical wave,
the particles are more likely to just stop. For cylindrical and plane waves,
the particles will reverse their direction of motion. Thus, along a streamline
there is a point at which the mass motion stops and the particle velocity
is zero. This point in space and time provides an additional condition to
determine the principle eigenvalue R, and in turn the remaining unknown
quantities.

To utilize this additional state of zero particle velocity along the release
streamline, we shall invoke the dynamic relationship between the principal

9 dusura TOpPeHNA M B3pBIBa Nt &, 1991 r. 129



detonic variables [7, 81, where, as before, the transport properties are neg-
lected. This dynamic relationship can be written as:

Pv + u* =0, (13)

where the dot above the symbols refers to total temporal differentials. After
normalizing and rearranging of terms, we can write

V(u=0)
gy |V (Bav)a, (14)

which represents conditions along a streamline involving detonic variables
between the CJ plane and the location where the particle velocity is zero.

The utility of the above expression can be demonstrated by considering
the classical case of the constant-gamma equation of state, PV" = const,
for which this integral can easily be evaluated to yield the expression

T+1
1 { o0 -1
For the usual T' = 3 case, we find
Viu=0,T =3) =9/8 =1,125. (16)

However, the JWL is not a constant-gamma EOS. It is designed to
account for the gamma range between a certain value near 2,77 [5] at the
CJ plane and the adiabatic exponent of the final polytropic gasecous pro-
ducts. When the isentropic JWL-EOS (Eqn. 9) is substituted into Eqn. 14,
there is no closed-form solution to the integral, and one must resort to a
close approximation. There are several ways to approach the problem,
among which are the Adams — Boshforth technique, the three-eights rule,
or Simpson’s method [9]. The latter was selected for this work after testing
it for stability and accuracy. The method is described in more detail in
the Appendix. In essence, the solution involves determining the approxima-
te relative specific volume of the reacted products at the point where the
particle velocity is zero and then iterating to a unique final value.

Such a procedure was followed to determine V(uz = 0) for all the explo-
sives listed in the data base [6]. These values are given in Table together
with the corresponding values of p,, D, V. and £,. Alsoshown in the Table
are arithmetic averages with their respective variances and standard devi-
ations. The results were both interesting and significant. For all listed
explosives, the value of V(u = 0) is nearly a constant Vaye(u = 0) —
= 1,1189 - 0,0050, with a standard deviation not exceeding 0,5 %. This
observation allowed us to use this unique of V(x = 0) in the iterative pro-
cess to solve for R, and R,.

During this procedure an estimate had to be made of the relationship
between the two eigenvalues R, and R,. One could either make an estimate
of R, and treat it as a constant or establish R, as a function of R, and recom-
pute its value during the iteration procedure. One could also require that R,
serve some other specific purpose, such as matching a certain value of gamma
with the value of V(z = 0). This latter assumption would require justifi-
cation and more extensive programming for solving simultaneous differen-
tial equations. Therefore. for the purpose of this communication we have
chosen the second estimate, which states that

R, = kR,, (17)

where k is a constant. This relationship is relatively easy to handle, and,
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Explosive p, g/cm?3 D, mm/us E, V (u=0)
BTF 1.859 8,480 0,730703 0,086025 1,12655
Comp A-3 1.650 8,300 0,736074 0,078297 1,11734
Comp B 1,717 7,980 0.730197 0,077739 1,11774
Comp C-4 1,601 8,193 0,739456 0,083746 1,11566
Cyclotol 1.754 8,250 0,731952 0,077063 1,11885
DIPAM 1,550 6,700 0,741303 0,089106 1,11969
EL-506A 1,480 7,200 0,732805 0,091237 1,11589
EL-506C 1.480 7,000 0,731108 0,085493 1,11431
Expl. D 1,420 6,500 0,733311 0,090007 1,1176
FEFO 1,590 7,500 0,720475 0.089447 1,12279
HMX 1,891 9,110 0,732378 0,066905 1,11629
HNS 1,400 6,340 0.742331 0,106621 1,12073
HNS 1,650 7,030 0,736340 0,091361 1,12002
LX-01 1,230 6.840 0,730651 0,106001 1,12648
LX-04-1 1.865 8,470 0.745883 0,071003 1,11407
LX-07 1,865 8,640 0,745010 0.071827 1,11392
LX-09-1 1,840 8.840 0,739199 0,073024 1,11853
LX-10-1 1.865 8.820 0,741526 0,071683 1.11697
LX-11 1,875 8.320 0.745747 0,069341 1,11197
LX-17-0 1,900 7,600 0,726636 0,062873 1,11146
NM 1.128 6.280 0,719015 0,114641 1,13192
Octol 78 1.821 8,480 0,738829 0,073311 1,11739
PBX-9010 1,787 8,390 0,729709 0.071547 1,11586
PBX-9011 1,777 8.500 0,735178 0,069320 1,11399
PBX-9404 1.840 8,880 0,740331 0,071584 1,11762
PBX-9407 1,600 7.910 0,735288 0,085906 1,12112
Pentolite 1,700 7,530 0,735453 0,084032 1,12116
PETN 1,500 7,450 0.735747 0,102818 1,13107
PETN 1,770 8,300 0,725264 0,082830 1.1259
Tetryl 1,730 7.910 0,736703 0,075755 1,11671
TNT 1,630 6,930 0,731734 0,089421 1,11598

Average 0,734720 0,082579 1.118889

Variance 0,000042 0,000155 0,000024
0,01 % 0,19 % 0,00 9%

Std. dev. 0,006536 0,012488 0,004989
0,89 % 15,12 % 0,45 %

judging from the existing data base [6] it is also a very reasonable one.
For most of the H—C—N—O explosives in the data base, £ = 0,27 with
a standard deviation from an average of not more than 2 %.

The final parameter value needed for the solution of Eqn. 14 is related
to the ground-state adiabatic exponent y. Of the three terms in the JWL-EO'S
(Eqn. 9), the third term containing ® dominates at the far end of the expan-
sion, i. e., when the products approach some normal state at atmospheric
conditions. Thus, the exponent (1 4+ ®) represents the terminal value of
the adiabatic exponent gamma, which for polytropic gases, such as the
products of an explosive reaction, would be near the value of 4/3. This re-
sults in ® having the value of 1/3, the value chosen for the solution of
Eqn. 14.

Thus, with all the unknowns in the Eqn. 14 either determined or proper-
ly estimated, the iterative process, although tedious, can easily be perfor-
med to yield a unique set of eigenvalues and coefficients required to carry
out calculations with the JWL-EOS. These then, together with the results
reported earlier [5] form a complete set of characteristic values which fully

describes a generic explosive in a nondimensional form: P. = P./p,D* —
= 0,2653, U, = u./D = 0,263, V, = v/v, = 0,7347, V(u = 0) = 1,119,
r.=Vv,/l -V, =271, E, = E,/Jo,D*> = 0,204 — 0,0734p, or E,ave =
=0,0826, o =y —1=1/3, k= R,/R, = 0,27, R, =4,41604, A
= Alp,D* = 5,35545, B = B/p,D* = 0,094983, C = C/p,D* = 0,0112292.
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Fig. 1. Adiabalic expansion of the re-
03 action products of a generic explosive.
The effect of E; and V(u — 0) on the
JWL gamma profile.
Eq: 1—0,0726, 2 — 0,0826, 3 — 0,0926; R;:
; 07 1—4,4298, 2 — 44160, 3 — 44025, 4—
3,89695, 5 — 10,83395; A: 1 —5,4202, 2 —
5,36565, 8 — 5,2915, 4 — 4,43962, 5—
88,59385; B: 1--0,11103, 2 — 0,09499, 3 —
‘ 01 0,07909, 4 —17,619-107%. 5 — 1,849790; C:
i 1—6,621-1079. 2 — 0,011229, 3 — 0,015844,
4 —0,0173148, 5—0,0123951; V (u=0):
2 — 1,119, 4 — 1,109, 5 — 1,129.

1 2 3 4

Normally, the expansion of the detonation products is shown on the
pressure-specific volume plane. However, the behavior of the products
on this plane is always a monotonically decaying function with a very steep
slope at the beginning. The release adiabat is therefore best illustrated by
a profile of the system gamma, defined as

Fz_dlllp' (18)

Both the normalized pressure and the system gamma curves are shown
in Fig. 1 for our generic explosive. In this figure the pressure curve drops
quickly from its nondimensional CJ value of 0,2653 to less than 10% of that
value at the relative specific volume of 1,6. Thereafter, the curve decays
only gradually to some final normal state. The gamma function, on the
other hand, forms a profile with a positive slope at the CJ point and two
distinet humps during the expansion process. As we will see in the following
sections, both humps can be controlled and varied but at a cost of loosing
the validity of the experimental data which generated the original fitting
process.

Effect of Internal Energy E,

From the list of characteristic values for a generic explosive only one,
the normalized energy — E,, could not be stated as a constant. Rather,
it turns out to be a simple linear function of the initial density [5]. To see
the effect of this value on the products EOS it is best to look at the profile
of the system gamma. This effect is illustrated in Fig. 1, 7—3, where the

value of E, is varied by +12 % from the average normalized value of 0,0826.
Constants unaffected by the change in E,:

V. = 0,7347, Vv = 0) =1,119, k = 0,27, o = 1/3.

Curves 7—3 clearly show that there is no effect on the initial CJ point
for energy changes that are different from the generic value of E,. Even in
the central region of the plot, where the energy term is most effective in
displacing the gamma profile, there is very little change. The effect of E,
is reflected in the size of the second hump: i. e., the smaller E, of larger
initial explosive density, the higher the second hump. The second hump
may altogether vanish if the energy value is increased. Although not directly
associated with the energy term, Lee and Hornig [3] have studied the effect
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Fig. 2. The effect of & and V (v =0)
on the JWL gamma profile.
Viu—0): 6 7—1,119, §—1,109, 9— 4
1,129; k: 6, 8, 9— 0,23, 7 — 0,31; R;: 6 —
436546, 7 —10,91562, 8 — 3,98664, 9 —-
4,78633; A: 6 — 5,30387, 7 — 55,58986, & -—
4,46918, 9 — 6,41625; B: 6 — 0,074540, 7 —
2,69632, 8 —6,202-1074, 9 — 0,150261;
C: 6-—19,9634-1073, 7—0,149773, 8 —
0.0173626, 9 — 5,1677-1073.

on the gamma profile by varying the loading density of PETN charges.
If one takes into account the linear relationship between normalized energy
and charge density [5], then PETN results confirm our finding of the ef-

fect of £, on the shape of the gamma profile.
Effect of Relative Specific Volume V(u=0)

As mentioned earlier the value of V(u — 0) controls the eigenvalue
This is illustrated in Fig. 1, which shows the profile of gamma for three
different values of V(u = 0). Constant unaffected by the change in V(u = 0):

E, — 0,0826. The remaining constants are the same as in curves 7—3. The

large value of A for curve 5 shifts the whole waveform to the left, dropping
off the usual first hump. The sensitivity of this parameter is immediately
evident. By varying the value of V(u = 0) by less than 1 % above and
below the established generic value, we see a dramatic change in the profile
of the system gamma. Also, both deviations (curves 4 and 5) cause the gamma
profile to loose its second hump and attain the normal state at a much higher
density than the original generic case (curve 2). By increasing the value
of V(u = 0), we also notice that the initial slope of gamma at the CJ point
becomes negative. This condition is similar to statistical mechanical and
other equations of state in general use. However, this negative initial slope
of the gamma profile does not agree with experimental evidence, as will
be shown later.

The Effect of Eigenvalue Ratio k=F,'R,

While evaluating R, and R, it was postulated that they are related
through a proportionality constant & (Eqn. 17). The generic value of this
constant was chosen on the basis of the existing data base [6]. However,
this value may not be correct, and therefore one needs to know what effect
this constant has on the gamma profile. Again, as before, the effect of k
is illustrated in Fig. 2,6, 2, 7. Constants uneffected by the change in & are the
same as in Fig. 1.

As is evident from Fig. 2 raising the value of k by about 15 % produces
the previously noted effect of enlarging the first hump, eliminating the
second, and reaching its normal state isentropic gamma value at a much
higher density. However, lowering the value of £ by 15 % one can see almost
no change in the gamma profile. At the lower k& the effect becomes evident
when variation in V(u — 0) is also introduced. This is seen in curves 8, 6, 9,
where & = 0,23 and V(u = 0) is varied between 1,109 and 1,129. Here,
depending on the value of V(v = 0), the second hump of the gamma profile
can be either greater or less than the first hump. Also, as in the other extre-
me cases, the second hump can disappear all together.
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Slope of Gamma at the CJ Point

Completely independent of any EOS, the plane wave hypothesis is used
to express the normalized system gamma as

X .\2

av

where X is the location of the detonation front in Cartesian coordinates with
the origin placed at the surface of initiation, X, is the specific location of
the CJ plane that is on the same streamline along which the particle veloci-
ty is being considered, and U is the normalized particle velocity. We emp-
hasize that the above expression is EOS-independent and applies to all pla-
ne-wave detonic systems whether they are steady, self-similar, or isentro-
pically expanding.

The relationship between V and X/X,. is quite complex, since it invol-
ves not only the streamline position but also the particle velocity. Neverthe-
less, near the CJ point this relationship can be simplified by letting the
dynamic motion be sufficiently small that the positional ratio can be con-
sidered unity. Then, in the near proximity of the CJ plane, we get

14

I‘VC< VL1 = T (20)
and the initial slope can be expressed as
ar 1 (21

av o —1)?

which is positive because any increase in V will lead to an increase in T'.

Summary

The present list of known explosives has a fairly large data base. Exa-
mining the data base, we noted that when each listing was normalized by
its dynamic pressure p,D?, all available H—C—N—O type explosives sta-
tistically converged to a single generic prototype, whose characteristic va-
lues are listed. This generic explosive can then be used to fully describe the
behavior of any new material when only the values of initial density p, and
detonation velocity D are available,

The products equation of state describes the isentropic expansion of
the reaction products from their initial CJ state to some terminal state at
atmospheric pressure and gaseous density. Among the currently popular
equations of state used to describe expansion of the detonation products,
the JWL-EOS was found to be the most practical and descriptive.

Although the JWL-EOS was originally proposed as an experimental
EOS requiring a certain amount of fitting to experimental data, the norma-
lization procedure and the introduction of an additional dynamic condi-
tion for the specific volume at the state where particle velocity is
zero revealed that all characteristic values in a nondimensional form are
either unique or interrelated to such an extent that very little or no gues-
sing at all is necessary to fill the complement of parameters and coefficients
needed to evaluate the algorithm. The list of nondimensional values pertai-
ning to the generic explosive should be sufficient to describe the behavior
of any explosive and in particular the behavior of the reaction products.

The three terms making up the JWL-EOS control the whole adiabatic
expansion region, and that control is reflected in the shape of the gamma
profile. The principal eigenvalue R, dominates the wave shape at and near
the beginning of the gamma profile near the CJ plane. Its dominance extends
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to about where particle velocity becomes zero. Following this region the

secondary eigenvalue R, along with the energy value E, controls the tran-
sition region before the adiabatic exponent takes over. The energy value

Ey(p,) depends on the initial density, p,. but does not influence initial CJ
conditions. However, the value of energy does affect the size and shape of
the second hump in the gamma profile. Together with the value of R,, the ener-
gy value can be used to eliminate the second hump altogether, if it is deemed
objectionable. In the present analysis we selected the secondary eigenvalue
to be linearly dependent on the primary eigenvalue to preserve the wave-
form shapes of the existing data base. After the second hump the gamma
profile asymptotically approaches the atmospheric state at some very large
expansion. For this work the state chosen is the usual one described by the
adiabatic exponent associated with a polytropic gas.

The gamma profile for the materials making up the published JWL-EOS
data base has an initial positive slope starting at the CJ plane. To our know-
ledge no other equation of state follows this description. Rather, they all
start out in a negative direction and monotonically decay to some atmosp-
heric condition. Very little experimental evidence supports this positive
slope contention, but what is available does confirm the plane wave theo-
retical evidence. For this reason it is deemed desirable, notwithstanding
statistical mechanical results to the contrary, to implement JWL equation
of state which supports these limited observations, as opposed to nondyna-
mic equations of state, which concern only pressure — volume conditions.

At the present state of our understanding, the second hump of the gam-
ma profile has no apparent reality. It is still an artifact of the old curve-
matching technique that required a particular pressure-volume relations-
hip. This hump is still present with the description of the generic explosive.
However, one should bear in mind that its existence is not absolute, and it

can be eliminated by a proper choice of energy E, and secondary eigenvalue
without affecting other characteristic features of the expansion.

One should also notice two distinct regions of the primary eigenvalues:
those around 4,4 and those around 10. The former result in the familiar
gamma profile with the double humps while the latter have no second hump.
This change to high values affects the initial slope at the CJ plane even to
the extent that a negative initial slope is a distinct possibility. This type
of profile decays much more rapidly and attains the value of polytropic
gamma at significantly higher densities.

In most respects, the JWL-EOS is a well-behaved expression ranging
over a wide choice of gamma profile features. It is well-identified by Mur-
naghan and Tait, and above all it conforms to theoretical expectations for
plane waves and experimental observations that the slope of the gamma
function for the expanding products at the CJ plane is positive.

Appendix

After invoking the dynamic relationship among the principal detonic
variables

Pv+u*=0

and normalizing it with the dynamic pressure p,D?, we arrive at Eqn. 14
in the text:
V(u.:o)
V.= j V —(apavyav. (0
Ve
This equation represents the condition under which one can evaluate the
relative specific volume at the state where the particle velocity is zero.
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Taking the derivative of Eqn. 9 and substituting it into Eqn. I, we get:

V(u=0)
1— V.= 5[mm*ﬂ+&&””—%%r”%n (1)
Ve

which has no direct solution but can be solved by approximation techni-
ques. We have used the Simpson’s Rule [10] with the result

Veteh

V Imay = L1 4 45 (Ve + ) + 1V + 20)) (111
Ve

where V(u — 0) = V., + 2h. By letting this limit equal to 1 -~ A we can
introduce A as the fractional increase in the specific volume over unity at
the location where the particle velocity is zero. This method of handling
the coefficient h reduces the propagation of computational errors and al-
lows a convenient way to enter the fraction part of volume into the iterati-
ve program.

Replacing the integrand of Eqn. IT with its functional counterpart in
Eqn. III and simplifying the resulting expression, we find

5(1—V)—2 _
e ix =4l + RyBe TN
c
1+ ae)C 1/2 L ' 1+e)yc |[¥2
[(1+V+ay2pte (1)

(Ivy
Using the available data base [5, 6] with reported values of R,, R,, V,,
E,, and o, one can easily determine the value of A and in turn the value of
V(u = 0) for each explosive in that data base. These values are listed in
Table 1. As one can easily note, the value of V(u = 0) for all the explosives
listed in that table remains the same within a standard deviation of less than
0,5 % from an average value of 1,119. Having established the uniqueness
of this value for most of the H—C—N—O explosives, we can use it in Eqn. IV
to determine the value of R, and R, for any new explosive. This procedure
is somewhat more involved because now each iteration for the principal
eigenvalue of R, will require reevaluation of all coefficients R,, 4, B and

C, i. e., one has to recalculate all normalized pressure coefficients after each
pass through the algorithm

(R)n41 = (R)), — FIF'.

Here. F symbolizes Eqn. IV when the left-hand side of the equation is mo-
ved to the right-hand side so that the value of F represents the remainder
to be nulled out by the iteration scheme and

F' = 9F/dR,.

This procedure is in effect the steepest prescription for convergence and
will yield the full set of eigenvalues and pressure coefficients which are
described in the text. The authors wish to express their gratitude to their
colleagues for valuable discussions on the subject and to Karen Spurlin
for her patience in typing several drafts of the manuscript.
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