УДК 536.46+536.2+541.123

ВЛИЯНИЕ КИНЕТИЧЕСКИХ СВОЙСТВ СМЕСИ НА МАКРОХАРАКТЕРИСТИКИ ВОЛН ФИЛЬТРАЦИОННОГО ГОРЕНИЯ ГАЗОВ

С. И. Футько

Институт тепло- и массообмена НАН Беларуси, 220072 Минск, Беларусь foutko@itmo.by

На основе анализа последних экспериментальных данных с использованием детальной кинетической модели рассмотрено влияние кинетических особенностей ультрабогатых метановоздушных смесей (по сравнению с ультрабедными) на основные характеристики сверхадиабатических волн фильтрационного горения газов. Показано, что ультрабогатым смесям свойственны существенно более низкие концентрации радикалов O, OH и H, что является результатом эффективного ингибирования атомарного водорода, участвующего в реакции разветвления цепей $H+O_2=OH+O$, метаном в реакции $H+CH_4=CH_3+H_2$. Поэтому для богатых составов характерно увеличение зоны предварительного подогрева и заметное уширение области тепловыделения. Снижение генерации основных радикалов в ультрабогатых смесях приводит к росту максимальной температуры каркаса на $\approx 300 \div 350~\mathrm{K}$ и к существенному увеличению скорости распространения фронта волны по сравнению с ультрабедными составами.

Ключевые слова: фильтрационная волна, тепловая волна, сверхадиабатический эффект, химическая структура, кинетический анализ, неустойчивость фронта, ультрабедные составы, ультрабогатые составы.

Исследования фильтрационного горения газов (ФГГ) в инертных пористых средах выявили существование волн горения, распространяющихся с низкими скоростями ($\approx 0.1 \div$ 1 мм/с) в условиях интенсивного межфазного теплообмена газа с пористой средой [1]. Данный процесс характеризуется расширенными концентрационными пределами горения, что позволяет создавать технологии сжигания газовых смесей как с чрезвычайно низкими, так и с высокими концентрациями топлива. В реакторах реверсивного типа благодаря улучшенным рекуперационным характеристикам может осуществляться устойчивое горение метановоздушной смеси с эквивалентным отношением $\Phi_{\min} = 0.026$ [2]. С другой стороны, в процессах ФГГ в реакторах конверсии метана с целью получения синтез-газа максимальное эквивалентное отношение для смесей метан воздух может достигать значений $\Phi_{\max}\cong 15$ [3].

Несмотря на то, что фильтрационному горению газов посвящено значительное количество теоретических работ (см. библиографию в обзоре [1]), лишь недавно математическое описание процессов ФГГ стало выходить за рамки преимущественно качественных моде-

лей благодаря использованию детальных кинетических схем химических процессов [4]. Так, в работах [5–7] показано, что использование кинетического механизма GRI [8] для метановоздушных смесей позволяет с хорошей точностью моделировать характеристики волн $\Phi\Gamma\Gamma$ в широком диапазоне составов ($\Phi=0,2\div 2,6$) и адекватно предсказывать выход основных пролуктов.

В настоящей работе на основе экспериментальных данных [5, 7] проведен анализ влияния кинетических свойств смеси на основные измеряемые параметры волн $\Phi\Gamma\Gamma$, такие как максимальная температура каркаса и скорость фронта горения.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Уравнения, описывающие распространение волны $\Phi\Gamma\Gamma$ в инертной пористой среде в пренебрежении диффузией и теплопроводностью в газовой фазе (в системе координат, движущейся вместе с фронтом горения с постоянной скоростью) имеют вид [4, 7, 9]

$$c_{p,g}G\frac{dT_g}{dx} = -\varepsilon \sum_{k=1}^{K} h_k \dot{\omega}_k W_k + \alpha_V (T_s - T_g), \quad (1)$$

$$-(1-\varepsilon)c_s\rho_s u_w \frac{dT_s}{dx} = (1-\varepsilon)\frac{d}{dx}\lambda_s \frac{dT_s}{dx} - \alpha_V(T_s - T_g), \quad (2)$$

$$G\frac{dY_k}{dx} = \varepsilon \dot{\omega}_k W_k. \tag{3}$$

Здесь T — температура; c_p — удельная теплоемкость; G — массовый расход; u_g — скорость фильтрации; u_w — скорость фронта горения; ρ — плотность; ε — пористость; Y_k , W_k — мольная доля и молярная масса k-го компонента; $\dot{\omega}_k$ — скорость образования k-го компонента; h_k — удельная энтальпия k-го компонента; $\lambda_s = \lambda_{s,0} + \left[32\varepsilon\sigma d/9(1-\varepsilon)\right]T_s^3$ теплопроводность каркаса с учетом излучения [10]; $\lambda_{s,0}$ — эффективная теплопроводность пористой среды; σ — постоянная Стефана — Больцмана; d — диаметр зерна засыпки; $\alpha_V =$ $(\pi \lambda_a/d^2) (2 + 1.1 \text{Re}^{0.6} \text{Pr}^{1/3})$ — коэффициент межфазного теплообмена [11]; Re = Gd/μ число Рейнольдса; Pr — число Прандтля; μ динамическая вязкость газа; индексы: q — газ, s — каркас.

При выводе уравнений (1)–(3) использовались условие $u_w \ll u_g$ и стационарное приближение для газовой фазы. Смесь поступает в систему с постоянным массовым расходом $G = \varepsilon \rho_q u_q$.

Полагая, что зона реакции мала по сравнению с зоной предварительного подогрева в волне $\Phi\Gamma\Gamma$ и результирующее тепловыделение происходит «мгновенно» при достижении некоторой температуры инициирования горения $T_{g,i}$ в точке x=0, можно показать, что система (1)–(3) имеет решение в следующем безразмерном виде [12]:

$$\tau = \exp(k_1 \varsigma), \quad \theta = (1 + k_1) \exp(k_1 \varsigma)$$

при
$$\varsigma < 0$$
; (4)

$$\tau = \frac{k_1(1+k_1)}{k_2(1+k_2)} \exp(k_2\varsigma) + \frac{(k_2-k_1)(1+k_1)}{k_2},$$
(5)

$$heta=rac{k_1(1+k_1)}{k_2}\,\exp{(k_2arsigma)}+rac{(k_2-k_1)(1+k_1)}{k_2}$$
при $arsigma>0,$

соответствующее граничным условиям [10]

$$\theta_{-\infty} = \tau_{-\infty} = 0, \quad \theta'_{\pm \infty} = \tau'_{\pm \infty} = 0,$$
 (6)

а также условиям «сшивки» в зоне реакции

$$\tau_{-0} = 1, \quad \tau_{+0} - \tau_{-0} = \frac{\Delta T'_{ad}}{\Delta T_{a.i}},$$
(7)

$$\theta_{-0} = \theta_{+0}, \quad \theta'_{-0} = \theta'_{+0}.$$
 (8)

Выше использовались безразмерные переменные и параметры [9]:

$$\varsigma = \frac{x\alpha_V}{c_{p,g}G}, \quad \tau = \frac{T_g - T_0}{\Delta T_{g,i}}, \quad \theta = \frac{T_s - T_0}{\Delta T_{g,i}}, \quad (9)$$

$$u = \frac{u_w}{u_{th}}, \quad a = \frac{(1 - \varepsilon)\lambda_s \alpha_V}{(c_{n,q}G)^2}.$$
 (10)

Здесь $u_{th}=c_{p,g}G/(1-\varepsilon)c_s\rho_s$ — скорость тепловой волны; T_{ad} и $\Delta T_{ad}=T_{ad}-T_0$ — адиабатическая температура сгорания и адиабатический разогрев смеси, а T'_{ad} и $\Delta T'_{ad}$ — соответствующие величины с учетом предварительного подогрева в зоне реакции волны $\Phi\Gamma\Gamma$ (подробнее см. ниже); T_0 — температура окружающей среды; $\Delta T_{g,i}=T_{g,i}-T_0$. Система уравнений (1)–(3) (без источнико-

Система уравнений (1)-(3) (без источникового члена) имеет только два различных корня характеристического полинома:

$$k_j = -\frac{1}{2} \left(1 + \frac{u}{a} \right) \pm \frac{1}{2} \left(\left(1 + \frac{u}{a} \right)^2 + 4 \frac{1 - u}{a} \right)^{0.5},$$

$$j = 1, 2, (11)$$

где $k_1 > 0$, а $k_2 < 0$.

Подстановкой решений для температурных профилей (4), (5) во второе условие «сшивки» (7) можно получить уравнение, определяющее совместно с (11) безразмерную скорость фронта реакции u:

$$\frac{k_2 - k_1}{1 + k_2} k_1 = \frac{\Delta T'_{ad}}{\Delta T_{a,i}}.$$
 (12)

Максимальная температура каркаса в волне $T_{s,\max}$ определяется из баланса энергии [9]:

$$T_{s,\text{max}} = T_0 + \frac{\Delta T'_{ad}}{1 - u}.$$
 (13)

Подставляя решение (5) в условие $\theta_{+\infty} \equiv \frac{\Delta T_{s,\max}}{\Delta T_{g,i}}$, где $\Delta T_{s,\max} = T_{s,\max} - T_0$, получим следующее соотношение между температурой инициирования горения и максимальной температурой каркаса в волне:

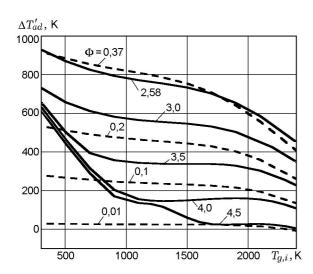


Рис. 1. Зависимость адиабатического разогрева смеси от температуры инициирования горения

$$\Delta T_{g,i} = \frac{k_2}{(k_2 - k_1)(1 + k_1)} \Delta T_{s,\text{max}}.$$
 (14)

Для удовлетворительной количественной оценки температуры инициирования горения в широком диапазоне составов смеси необходимо применять кинетические схемы с подробным набором элементарных реакций (см. также [4]). В данной работе используется детальная схема окисления метана GRI 3.0 [8], состоящая из 325 обратимых элементарных реакций, 53 компонентов и оптимизированная в различных экспериментальных условиях.

Итерационная процедура. Решение системы (1)–(3) проводилось методом «пристрелки». Цикл итераций начинался заданием (произвольного) значения температуры инициирования горения $T_{g,i}$. По соотношениям (11), (12) определялось значение безразмерной скорости u. Далее по максимуму тепловыделе-

ния
$$H_{\max} = \max\left(-\varepsilon\sum_{k=1}^K h_k \dot{\omega}_k W_k\right)$$
 вычисля-

лась температура $T_{g,i}$ путем интегрирования уравнений (3) по профилям температуры (4) с использованием подпрограмм расчета газофазной кинетики CHEMKIN-II [13]. Значение максимальной температуры определялось из балансового соотношения (13). Итерации быстро сходились. Относительная погрешность расчетов составляла менее 0,1%.

Эффект обратных реакций в продуктах горения. В данной «разрывной» постановке интегральное тепловыделение сильно зависит от

температуры в зоне реакции. Такое свойство системы можно выразить функциональной зависимостью адиабатического разогрева смеси $\Delta T'_{ad} \equiv T_{ad}(T_{g,i}) - T_0$ от температуры инициирования горения $T_{g,i}$ в зоне предварительного подогрева волны ФГГ (рис. 1). Существенное уменьшение $\Delta T'_{ad}$ с ростом $T_{g,i}$ объясняется возрастающим вкладом обратных реакций в продуктах горения. Такая поправка представляется все более важной по мере увеличения отношения $\Delta T_{s,\max}/\Delta T'_{ad}$. Зависимости $\Delta T'_{ad} = \Delta T_{ad}(T_{g,i})$ удобно аппроксимировать полиномами вида

$$\Delta T'_{ad}(T_{g,i}) = a_0 + a_1 T_{g,i} + a_2 T_{g,i}^2 + a_3 T_{g,i}^3.$$
 (15)

Коэффициенты a_i (точность аппроксимации не менее 0,2 %) для температур $T_{g,i}=300\div2100~\mathrm{K}$ в диапазоне $\Phi=0.01\div5.0$ сведены в табл. 1.

 Рассмотрим ряд характерных особенностей зависимости $\Delta T'_{ad}(T_{g,i}),$ представленной на рис. 1. Анализ кинетики показывает, что как для ультрабедных, так и для ультрабогатых составов быстрое уменьшение $\Delta T'_{ad}$ с ростом $T_{q,i}$ обусловлено преимущественно увеличением вклада эндотермических процессов паровой $(CH_4+H_2O=3H_2+CO)$ и углекислотной $(CH_4+CO_2 = 2H_2+2CO)$ конверсии метана. При достижении температуры $T_{g,i} \approx 2000 \ \mathrm{K}$ доминирующим эндотермическим процессом становится термическое разложение водорода $(H_2 + M = 2H + M)$. Исключение составляют составы вблизи стехиометрии для реакции парциального окисления метана кислородом $CH_4+(1/2)O_2=2H_2+CO$. Активация данной экзотермической реакции (начиная с $T_{a,i} \approx$ 1000 К) постепенно компенсирует вклады эндотермических процессов и для составов в области $\Phi = 4.0 \pm 0.5$ ведет даже к небольшому росту зависимости $\Delta T'_{ad}(T_{g,i})$ (это увеличение не превышает $\approx 10 \%$ величины $\Delta T'_{ad}$).

На рис. 2 представлены типичные расчетные профили температуры в волне ФГГ для ряда ультрабедных и ультрабогатых составов. В расчетах использовались следующие значения параметров (в соответствии с данными [5, 7]): $\varepsilon = 0.4$, $c_s = 794~\text{Дж/(кг·K)}$, $\rho_s = 3.15 \cdot 10^3~\text{кг/м}^3$, $c_{p,g} = 1.3 \cdot 10^3~\text{Дж/(кг·K)}$, $\lambda_{s,0} = 1.0~\text{Вт/(м·K)}$, G = 0.12~кг/(м²·c), d = 5.6~мм.

Следует отметить, что данная модель, включающая детальное моделирование периода индукции горения с последующим «мгно-

		таолица 1			
Φ	a_0	a_1	a_2	a_3	
0,01	42,71	-0,0548	$5{,}32\cdot10^{-5}$	$-1,62 \cdot 10^{-8}$	
0,1	328,41	-0,196	$1{,}56\cdot10^{-4}$	$-4,50 \cdot 10^{-8}$	
0,2	609,26	-0,307	$2,41\cdot 10^{-4}$	$-7,23 \cdot 10^{-8}$	
$0,\!37$	989,26	-0,301	$2,11\cdot 10^{-4}$	$-7,84 \cdot 10^{-8}$	
2,58	$1065,\!40$	-0,566	$3,94 \cdot 10^{-4}$	$-1,11\cdot 10^{-7}$	
3,0	894,92	-0,689	$4,90\cdot10^{-4}$	$-1,25 \cdot 10^{-7}$	
3,5	968,54	-1,330	$9,06\cdot10^{-4}$	$-2,01\cdot 10^{-7}$	
4,0	1074,50	-1,742	$1,07 \cdot 10^{-3}$	$-2,12\cdot 10^{-7}$	
4,5	950,0	-1,330	$6,57 \cdot 10^{-4}$	$-1,12 \cdot 10^{-7}$	

Таблина 1

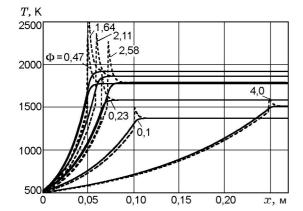


Рис. 2. Зависимости температур твердой и газовой фаз от координаты в волне $\Phi\Gamma\Gamma$ для разных составов:

 $G=0.12~{
m kr/(m^2 \cdot c)};$ сплошные линии — T_s , штриховые — T_g

венным» интегральным тепловыделением, физически аналогична постановке задачи, используемой при описании ударных волн (см., например, обзор [14]).

ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

Эксперименты [5, 7] проводились на установке, в которой фильтрационное горение осуществлялось в вертикальной кварцевой трубе (с внутренним диаметром 38 мм и длиной 450 мм), заполненной однородной засыпкой из шариков алюмины диаметром 5,6 мм. Пористость слоя оценивалась как $\varepsilon=0,4$. Внутренняя поверхность трубы была покрыта 2-миллиметровой изоляцией Fiberfrax. Для снижения теплопотерь из зоны реакции исполь-

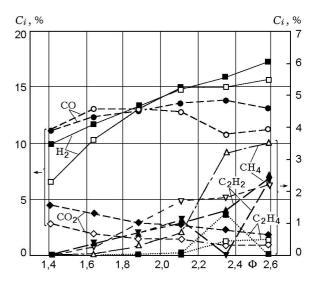


Рис. 3. Зависимость сухого состава продуктов горения от эквивалентного соотношения Φ : $G=0.12 \text{ кг/(m}^2 \cdot \text{c}); \blacksquare$ — газохроматографические данные $[5,7]; \square$ — расчет

зовался дополнительный 30-миллиметровый слой внешней изоляции. Предварительно перемешанная метановоздушная смесь подводилась к нижней части установки. Температуру измеряли термопарами S-типа. Термопары (из проволоки диаметром 130 мкм) были вмонтированы в общую керамическую оболочку (стержень диаметром 2 мм), которая располагалась по оси симметрии трубы. Такая конструкция термопар позволяет регистрировать температуры, близкие к температуре пористого каркаса, при этом возмущения, вносимые в газовый и тепловой потоки в зоне реакции, минималь-

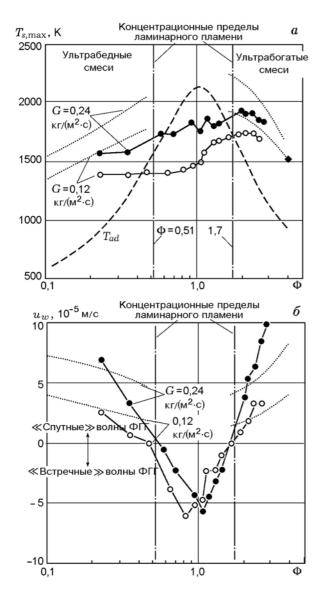


Рис. 4. Зависимости макрохарактеристик волны $\Phi\Gamma\Gamma$ от состава:

пунктирные линии — расчет, \bullet , \circ — данные [5, 7], \bullet — [21], $\Phi = 4.0$

ны. В верхней части трубы осуществлялся отбор продуктов реакции для газохроматографического анализа (керамический зонд погружался на 2 см в пористую среду). Таким образом были получены данные по содержанию компонентов CH_4 , O_2 , H_2 , CO, CO_2 , C_2H_2 , C_2H_4 и N_2 в газовом потоке (рис. 3). Состав анализировался в момент, когда фронт реакции находился на расстоянии ≈ 25 см от выходного сечения реактора.

Измерения проводились для смесей с $\Phi = 0.2 \div 2.6$ при G = 0.12 и 0.24 кг/(м $^2 \cdot$ с). В каждой серии экспериментов расход воздуха оставался

фиксированным, а расход метана варьировался для достижения требуемого значения Ф. Первоначально горение инициировалось в верхней части трубы и подбирался состав, обеспечивающий распространение «встречной» волны. При подходе к нижнему концу трубы расход метана уменьшался, и таким образом исследовались режимы распространения «спутной» волны. На рис. 4 представлены значения максимальной температуры каркаса и скорости распространения фронта волны в двух сериях измерений.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты экспериментов [5, 7] показывают (см. рис. 4,a), что волны ФГГ ультрабогатых составов ($\Phi=1,7\div2,6$) характеризуются более высокими, примерно на $300\div350$ K, значениями максимальной температуры каркаса по сравнению с волнами в ультрабедных смесях ($\Phi=0,2\div0,5$). Это обусловлено различиями кинетических свойств, в чем можно убедиться с помощью балансового соотношения (13), если рассмотреть две ультрабедные или две ультрабогатые смеси с одинаковым теплосодержанием (величиной $\Delta T'_{ad}$), так как расход газа и свойства пористой среды при этом одни и те же.

Приводимые ниже результаты кинетического анализа позволяют связать изменения макрохарактеристик волн $\Phi\Gamma\Gamma$ с различиями в условиях образования и поглощения радикалов в зависимости от состава смеси.

1. Кинетические особенности ультрабогатых смесей по сравнению с ультрабедными. Интегрирование уравнений (1), (3) по экспериментальным профилям $T_s(x)$ из [5, 7] для смесей с одинаковым теплосодержанием выявляет существенные различия кинетических свойств ультрабедных и ультрабогатых составов (см. табл. 2). Ввиду сильной зависимости конечных концентраций продуктов горения от максимальной температуры газа [15], а также из-за сложной внутрипоровой структуры потока газа в зоне реакции, коэффициент межфазного теплообмена считался неизвестным [4] и определялся варьированием, путем согласования расчетных концентраций Н2 с газохроматографическими данными [5, 7] (см. рис. 3). В итоге для расчетов было принято значение $\alpha_V =$ $10^6 \; {\rm BT/(m^3 \cdot K)}$. Точность согласования находилась в пределах $10 \div 15 \%$, что соответствует точности газохроматографических измерений.

Φ	$[\mathrm{H}]_{\mathrm{max}}$	$[\mathrm{OH}]_{\mathrm{max}}$	[O] _{max}	$[\mathrm{CH_3}]_{\mathrm{max}}$	$H_{\mathrm{max}},$	$\Delta x_c^{1)},$	$T_{g,\mathrm{max}}$	$T_{s,\mathrm{max}}^{2)}$	$u_w^{2)},$
	ppm				MB_T/M^3	MM	K		м/с
0,37	3400	5600	8300	900	$1,1\cdot 10^3$	0,36	1690	1390	$7,4 \cdot 10^{-6}$
2,58	1500	190	40	7000	$5.7\cdot 10^2$	0,65	1940	1695	$3,3 \cdot 10^{-5}$

Таблица 2

 Π р и м е ч а н и я. $^{1)}$ Ширина зоны реакции оценивалась по тепловыделению, равному 1/10 максимальной величины.

²⁾ Экспериментальные данные [5, 7], $G = 0.12 \text{ кг/(м}^2 \cdot \text{c})$.

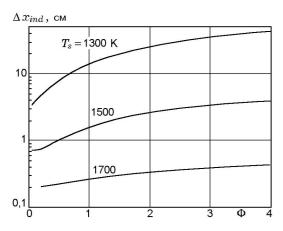


Рис. 5. Зависимость периода индукции от состава ($G=0.12~{\rm kr/(m^2 \cdot c)})$

Из табл. 2 видно, что ультрабогатый состав ($\Phi=2,58$) характеризуется резко сниженным, примерно на порядок, содержанием основных радикалов ОН, О и Н, генерируемых в волне $\Phi\Gamma\Gamma$ по сравнению с ультрабедным составом ($\Phi=0,37$). Типичны следующие соотношения между максимальными концентрациями радикалов:

$${
m [O]_{max} > [OH]_{max} > [H]_{max} > [CH_3]_{max}} ~~(16)$$
 для ультрабедных и

$$[CH_3]_{max} > [H]_{max} > [OH]_{max} > [O]_{max}$$
 (17)

для ультрабогатых составов. Последовательность (17) располагается в обратном порядке по отношению к (16) вследствие значительного избытка CH_4 и O_2 соответственно.

Следуя [1, 16], будем интерпретировать температурную эволюцию газовой фазы в волне ФГГ как процесс цепочно-теплового взрыва. С этой точки зрения в зоне предварительного подогрева волны ФГГ будет идти подготовка самовоспламенения: постепенная наработка радикалов до уровня, необходимого для

лавинообразного разложения топлива в зоне реакции. Этот процесс в зависимости от Ф можно характеризовать некоторым пространственным масштабом — периодом индукции Δx_{ind} . Ситуация осложняется тем, что зона предварительного подогрева характеризуется непостоянным (михельсоновским) температурным профилем (4), который также значительно меняется при изменении состава смеси. Поэтому при изучении зависимости $\Delta x_{ind}(\Phi)$ целесообразно рассмотреть упрощенную постановку задачи (1)-(3) с $T_s = \text{const}$ и $\alpha_V = \infty$, что позволяет снять «маскирующее» влияние меняющегося температурного режима в зоне предварительного подогрева волны ФГГ. Начало периода индукции задается условием $T_q = T_s$, а конец определяется по максимуму тепловыделения. На рис. 5 представлены расчетные зависимости $\Delta x_{ind}(\Phi)$ при $T_s=1300\div 1700$ К $(G = 0.12 \text{ кг/(м}^2 \cdot \text{c}))$. Отметим нетривиальный факт монотонного роста периода индукции с увеличением концентрации топлива независимо от (фиксированной) температуры. Данные рис. 5 свидетельствуют о сильной (экспоненциальной) зависимости периода индукции от температуры и гораздо более слабой зависимости от состава: уменьшение температуры на 200 К дает примерно такое же увеличение Δx_{ind} , как и переход от ультрабедных составов ($\Phi \approx 0.1$) к ультрабогатым ($\Phi \approx 4.0$).

На рис. 6 показаны результаты расчетов в несколько измененной постановке: $dT_s/dx=$ const и $\alpha_V=10^6~{\rm Br/(m^3\cdot K)},$ что позволяет сравнить динамику окисления смесей различных составов в условиях температурного режима, характерного для зоны предварительного подогрева волны $\Phi\Gamma\Gamma$ (значение градиента $dT_s/dx\cong 57~{\rm K/mm}$ оценено по экспериментальным данным при $G=0.12~{\rm kr/(m^2\cdot c)}$ [5, 7]). Из рис. 6 отчетливо видно, что переход от ультрабедных смесей к ультрабогатым характеризу-

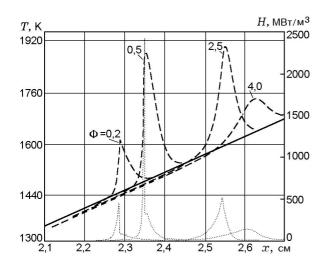


Рис. 6. Зависимости температуры газовой фазы и тепловыделения от координаты для разных составов:

 $G=0,\!12$ кг/(м $^2\cdot$ с); сплошная линия — T_s , штриховые — T_g , пунктирные — H

ется возрастанием периода индукции, начало которого задается условием $T_g = T_s = T_0$, и увеличением зоны тепловыделения с уменьшением его максимального значения. Данные зависимости обусловлены снижением генерации радикалов с ростом Φ .

Отметим, что структура тепловыделения в ультрабогатых смесях качественно отличается от ультрабедных (см. рис. 6). Для бедных составов область тепловыделения состоит из двух последовательных пиков, первый из которых формируется при окислении метана и водорода радикалами ОН, а второй — в результате реакции СО+ОН=СО2+Н [17]. Их пространственное разделение обусловлено тем, что окисление СО протекает гораздо медленее, чем СН₄. Для богатых составов характерен один пик тепловыделения, обусловленный процессом окисления СН₄ и Н₂ радикалами ОН [15].

На рис. 7 представлены максимальные концентрации радикалов H, OH, O, HO₂, CH₃ в зависимости от Φ (по данным рис. 6) и их концентрации, соответствующие условию $T_g = T_s$. Из рис. 7, δ видно, что для максимальных концентраций на ультрабедном и ультрабогатом участках характерны соотношения (16) и (17) соответственно. При этом наблюдается плавный переход одной последовательности соотношений в другую вблизи $\Phi \approx 0,7$. Сравнивая смеси с одинаковым теплосодержанием, можно

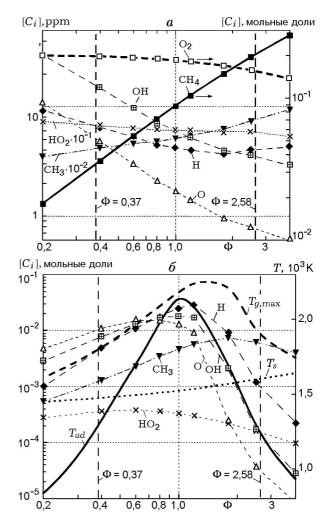


Рис. 7. Зависимости концентраций радикалов от состава:

a — максимальные значения; б — соответствующие условию $T_g = T_s$

получить примерно те же уровни концентраций радикалов, что и в табл. 2.

Из рис. 7,a видно постепенное снижение концентраций радикалов с увеличением Φ , что объясняет монотонный рост периода индукции. Характерными для области предварительного подогрева являются следующие соотношения между концентрациями радикалов:

$$[\mathrm{CH_3}]_{ind} > [\mathrm{OH}]_{ind} \geqslant [\mathrm{H}]_{ind} > [\mathrm{O}]_{ind} \quad (18)$$

для ультрабедных и

$$[\mathrm{CH_3}]_{ind} > [\mathrm{H}]_{ind} > [\mathrm{OH}]_{ind} > [\mathrm{O}]_{ind} \quad (19)$$

для ультрабогатых составов.

Для ультрабогатых составов соотношения между концентрациями радикалов (см. (17) и (19)) совпадают, а для ультрабедных (ср. (16) и

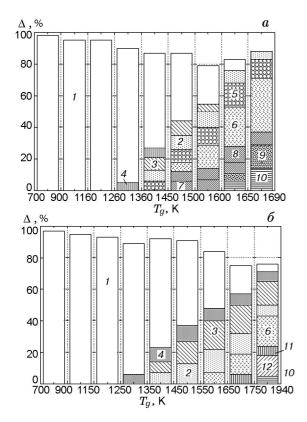


Рис. 8. Вклады основных каналов в образование радикалов H в зависимости от температуры газа в волне $\Phi\Gamma\Gamma$:

 $a \ \ \, - \Phi = 0.37; \ \ \, 6 \ \ \, - \Phi = 2.58; \ \, \text{относительные вклады не менее 5 %; } 1 \ \ \, - \text{СH}_3\text{O}(+\text{M}) = \text{H+CH}_2\text{O}(+\text{M}), } 2 \ \ \, - \text{HCO}(+\text{M}) = \text{H+CO+M}, } 3 \ \ \, - \text{C}_2\text{H}_5(+\text{M}) = \text{H+C}_2\text{H}_4(+\text{M}), } 4 \ \ \, - \text{2CH}_3 = \text{H+C}_2\text{H}_5, } 5 \ \ \, - \text{O+CH}_3 = \text{H+CH}_2\text{O}, } 6 \ \ \, - \text{OH+H}_2 = \text{H+H}_2\text{O}, } 7 \ \ \, - \text{CH}_2 + \text{O}_2 = 2\text{H+CO}_2, } 8 \ \ \, - \text{O+CH}_3 = \text{H+H}_2 + \text{CO}, } 9 \ \ \, - \text{OH+CO} = \text{H+CO}_2, } 10 \ \ \, - \text{O+H}_2 = \text{H+OH}, } 11 \ \ \, - \text{HCO+H}_2\text{O} = \text{H+CO+H}_2\text{O}, } 12 \ \ \, - \text{C}_2\text{H}_3(+\text{M}) = \text{H+C}_2\text{H}_2(+\text{M}) }$

(18)) — нет. Особенности генерации радикалов можно исследовать с помощью кинетического анализа [18].

На рис. 8, 9 представлена характерная температурная эволюция основных каналов образования и поглощения радикалов H в ультрабедной ($\Phi=0.37$) и ультрабогатой ($\Phi=2.58$) волнах $\Phi\Gamma\Gamma$. На рис. 8 видны характерные различия между ультрабогатыми и ультрабедными смесями в структуре вкладов в генерацию радикалов H в области предварительного подогрева ($T_g\leqslant 1500~{\rm K}$) и в зоне реакции ($T_q>1500\div 1600~{\rm K}$).

В ультрабедных смесях в зоне реакции основной вклад ($\approx 80~\%$) в образование радикалов Н вносят реакции окисления CH_3 , H_2

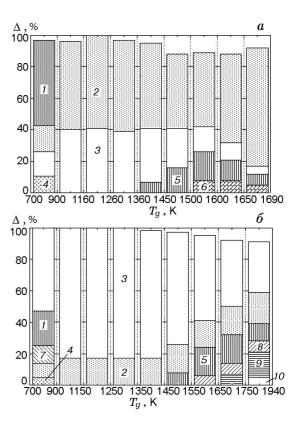


Рис. 9. Вклады основных каналов в поглощение радикалов H в зависимости от температуры газа в волне $\Phi\Gamma\Gamma$:

 $a \ \ \, - \ \, \Phi \ \ \, = \ \, 0,37; \ \, \delta \ \ \, - \ \, \Phi \ \ \, = \ \, 2,58;$ относительные вклады не менее 5 %; $1 \ \ \, - \ \, H + O_2 + N_2 = HO_2 + N_2,$ $2 \ \ \, - \ \, H + O_2 = O + OH, \ \, 3 \ \ \, - \ \, H + CH_4 = CH_3 + H_2, \ \, 4 \ \ \, - \ \, H + 2O_2 = HO_2 + O_2, \ \, 5 \ \ \, - \ \, H + CH_2O = HCO + H_2, \ \, 6 \ \ \, - \ \, H + HO_2 = 2OH, \ \, 7 \ \ \, - \ \, H + C_2 + M = HO_2 + M, \ \, 8 \ \ \, - \ \, H + C_2H_6 = C_2H_5 + H_2, \ \, 9 \ \ \, - \ \, H + C_2H_4 = C_2H_3 + H_2,$ $10 \ \ \, - \ \, H + CH_3(+M) = CH_4(+M)$

и СО радикалами О и ОН, а в ультрабогатых смесях более 50 % суммарного вклада приходится на каналы термической декомпозиции C_2H_5 , C_2H_3 , HCO и CH_3O (см. рис. 8). В ультрабогатых составах ключевым является факт явного доминирования канала поглощения радикалов H метаном: $H+CH_4 = CH_3+H_2$ (см. рис. 9,6), тогда как для ультрабедных составов такую роль играет реакция разветвления цепей $H+O_2 = O+OH$ (рис. 9,a). Это обстоятельство наряду с тем, что последняя реакция доминирует в образовании радикалов ОН и О в зоне реакции для обеих смесей, и обусловливает соотношения (16) и (17) между максимальными концентрациями основных радикалов. Для поглощения радикалов Н в зоне реакции ультрабогатой смеси характерен существенный вклад ($\approx 40 \%$) реакций с участи-

ем углеводородов $\mathrm{CH_2O}$, $\mathrm{C_2H_4}$ и $\mathrm{C_2H_6}$, соответствующих $\mathrm{C_1}$ - и $\mathrm{C_2}$ -путям окисления метана (см. рис. 9). Для ультрабедных составов заметный вклад ($\approx 20~\%$), кроме метана, вносит также формальдегид.

В зоне предварительного подогрева как для ультрабедных, так и для ультрабогатых составов доминирующим источником радикалов Н является реакция термического разложения $CH_3O(+M) = H + CH_2O(+M)$ (рис. 8). При этом различие вкладов остальных источников относительно невелико. Отметим лишь, что каналы термического разложения С₂Н₅, НСО и рекомбинации СН₃ дают несколько больший вклад в ультрабогатых смесях ($\approx 40 \%$), чем в ультрабедных ($\approx 20 \%$). Структура поглощения атомарного водорода в этой области качественно та же, что и в зоне реакции: доминирование канала с участием метана для ультрабогатых составов и реакции с молекулярным кислородом для ультрабедных (см. рис. 9). Интересно, что даже при «низких» температурах $(T_q < 900 \text{ K})$ в ультрабогатых смесях $\approx 50 \%$ радикалов Н поглощается в реакции Н+СН₄ = СН₃+Н₂, при этом в ультрабедных составах основной вклад приходится на реакцию трехчастичной рекомбинации $H+O_2+N_2 = HO_2+N_2$.

Особенность зоны предварительного подогрева в том, что в ней температура газа (менее ≈ 1500 K) еще недостаточна для «включения» реакции разветвления цепей H+O₂ = О+ОН. Поэтому концентрации кислородсодержащих радикалов ОН и О невелики и преобладающую роль в окислении углеводородов играют радикалы НО2. При этом реакция $HO_2+CH_3 = OH+CH_3O$ (с учетом последующего быстрого термического разложения СН₃О по каналу $CH_3O(+M) = H + CH_2O(+M)$) является основной реакцией разветвления цепей, а также источником радикалов ОН и Н в диапазоне $T_q \cong 900 \div 1500 \text{ K}$. Поскольку данный механизм разветвления цепей доминирует в зоне предварительного подогрева волны как ультрабогатых, так и ультрабедных составов, то становится понятным и подобие генерируемых в этой зоне концентраций радикалов в соотношениях (18), (19).

С точки зрения размножения радикалов метан в соответствии с реакцией $H+CH_4=CH_3+H_2$ (с учетом относительно малой реакционной способности метильного радикала CH_3) является эффективным ингибитором атомарного водорода, так как препятствует реак-

ции $H+O_2=O+OH$, которая ведет к лавинообразному увеличению концентраций радикалов OH и O. Такой процесс ингибирования разветвления цепей протекает очень эффективно, так как константа скорости k_{53} распада метана по каналу $H+CH_4=CH_3+H_2$ примерно на порядок превышает константу скорости k_{38} реакции разветвления цепей $H+O_2=O+OH$ (здесь номера реакций соответствуют данным интерпретатора CHEMKIN-II).

Доминирование тех или иных каналов в поглощении радикалов Н удобно характеризовать величиной $\delta' = k_{38}[O_2]_c/k_{53}[CH_4]_c$, аналогичной параметру $\delta = k_{38}[O_2]_c/k_{53}[CH_4]_0$, введенному в [19] при построении асимптотической структуры стехиометрического метановоздушного пламени. Здесь индексами обозначены: c — текущее значение в волне; 0 — исходные реагенты. Из рис. $9, \delta$ видно, что для ультрабогатых составов $\delta' < 1$: в области предварительного подогрева $\delta' \cong 0,2 \div 0,25$ и в зоне реакции $\delta' \cong 0.3 \div 0.6$. В ультрабедных составах ситуация качественно другая (см. рис. 9, a): параметр $\delta' > 1$ и меняется от $1,1 \div 1,6$ в области предварительного подогрева до 1,9 ÷ 15 в зоне реакции.

Таким образом, пока в системе находятся молекулы СН₄ (или, по тем же причинам, другие углеводороды), они окисляются радикалами Н в первую очередь. В ультрабогатых составах ввиду значительного избытка СН₄ эффективное поглощение атомарного водорода метаном приводит к характерному снижению генерации основных радикалов ОН, О и Н (см. табл. 2). Это увеличивает период индукции, расширяет зону реакции и уменьшает максимальное тепловыделение по мере перехода от ультрабедных составов к ультрабогатым (см. рис. 5, 6).

Аналогичные проявления недостатка радикалов в условиях богатых смесей наблюдаются и в реакторах других типов, например, «идеального перемешивания» и «plug-flow» [14].

Уменьшение общего уровня радикалов в системе при увеличении концентрации топлива проявляется и в значениях глобальных кинетических коэффициентов. В [20] получены следующие оценки для энергии активации в условиях волны $\Phi\Gamma\Gamma$: $E_1/R\cong 1,6\cdot 10^4$ К для ультрабедных $(0,1\leq\Phi\leq 0,47)$ и $E_2/R\cong 2,7\cdot 10^4$ К для ультрабогатых $(2,0\leqslant\Phi\leqslant 4,0)$ метановоздушных составов. Если воспользоваться результа-

тами [19], где показано, что эффективная энергия активации определяется не каким-то одним каналом, лимитирующим окисление топлива, а относительной конкуренцией нескольких реакций за ключевые радикалы, то ясно, что ингибирование радикалов Н метаном должно приводить к тому, что $E_2 > E_1$.

2. Влияние состава смеси и расхода газа на макрохарактеристики волн ФГГ. Применим полученную выше информацию о кинетических свойствах смесей для интерпретации экспериментальных данных на рис. 4.

Отметим, что составам (см. рис. $4, \delta$), находящимся вне концентрационных пределов распространения ламинарного пламени, соответствуют «спутные» ($u_w > 0$) сверхадиабатические режимы распространения волны $\Phi\Gamma\Gamma$. При этом уменьшение калорийности состава (или $\Delta T'_{ad}$) ведет к монотонному увеличению скорости фронта волны u_w как для ультрабедных ($\Phi < 0,51$), так и для ультрабогатых смесей ($\Phi > 1,7$). Увеличение расхода смеси также приводит к росту u_w во всем диапазоне ультрабедных и ультрабогатых составов.

Кроме значительного увеличения максимальной температуры каркаса (на $\approx 300 \div$ 350 К) при переходе от ультрабедных составов к ультрабогатым, для зависимости $T_{s,\max}(\Phi)$ характерен максимум вблизи $\Phi \approx 2.1$. Этот максимум образуется в результате наложения монотонно растущей зависимости $\Delta x_{ind}(\Phi)$ и немонотонной функции $\Delta T'_{ad}(\Phi)$ (со спадающим участком для ультрабогатых составов, рис. 4,a). Максимум зависимости $T_{s,\max}(\Phi)$ будет отчетливее, если расширить концентрационный предел горения в сторону еще более богатых смесей. Последнее достигается увеличением теплоизоляции системы для снижения внешних теплопотерь. Так, в [21] на аналогичной установке (с теми же параметрами пористой среды, расходом и т. д.) было достигнуто значение $\Phi_{\max} = 4.0$ (соответствующая точка добавлена на рис. 4,a). Из оценок для концентрационных пределов распространения ламинарного пламени следует, что для обеспечения стабильного горения тепловыделение должно быть не менее $\approx 2 \cdot 10^2 \; {\rm MBr/m^3}$. Это требование соответствует расчетам для волны ФГГ с $\Phi = 0.37$ и 2,58 (см. табл. 2, где несколько меньшие значения обусловлены определением

тепловыделения в волне как $-\varepsilon \sum\limits_{k=1}^K \dot{\omega}_k h_k W_k).$

При увеличении расхода газа наблюдается

заметное расширение концентрационных пределов горения в волне $\Phi\Gamma\Gamma$ (с $\Phi_{\rm max}=2.58$ до $\Phi_{\rm max}=2.82$ см, рис. 4,a), что обусловлено увеличением температуры в зоне реакции вследствие роста эффективности теплового рекуперативного цикла в волне $\Phi\Gamma\Gamma$ [16].

Интересно отметить, что для концентрационных пределов в волне $\Phi\Gamma\Gamma$ выполняется условие $\Delta T'_{ad}(\Phi_{\rm max}) > \Delta T'_{ad}(\Phi_{\rm min})$, аналогичное неравенству $T_{ad}(1,7) > T_{ad}(0,51)$ для концентрационных пределов распространения ламинарного пламени (см. рис. 4,a). Из результатов п. 1 ясно, что требование большей калорийности смеси на концентрационном пределе со стороны ультрабогатых составов объясняется относительным ухудшением условий генерации радикалов в этом случае по сравнению с ультрабедными смесями.

Представленные на рис. 2 расчетные температурные профили подтверждают увеличение периода индукции, проявляющееся в увеличении зоны предварительного подогрева волны $\Phi\Gamma\Gamma$, в ультрабогатых составах по сравнению с ультрабедными (необходимо сравнивать смеси примерно с одним и тем же значением $\Delta T'_{ad}$). Как видно из рис. 4, модель с узкой зоной реакции удовлетворительно передает основные качественные особенности экспериментальных зависимостей.

Рассмотрим с новой точки зрения уравнение баланса энергии в волне $\Phi\Gamma\Gamma$. Для этого в (13) вместо скорости фронта u_w введем в явном виде массовую ламинарную скорость горения смеси S_l в волне, так что по определению $u_w=u_q-S_l$. Тогда (13) перепишется в виде

$$(1 - \Delta T'_{ad}/\Delta T_{s,\text{max}})u_{th} = u_g - S_l.$$
 (20)

Отметим, что несмотря на то, что величина u_w удобна для измерений, она не имеет непосредственного физического смысла в отличие от u_g и S_l .

Данный подход естественным образом позволяет характеризовать кинетические свойства состава реагентов, окисляющихся в зоне реакции волны $\Phi\Gamma\Gamma$, скоростью ламинарного пламени S_l (оценки в [17] показывают, что при столь малых расходах газа эффектом турбулизации течения можно пренебречь).

В соответствии с теорией распространения ламинарного пламени [22] скорость горения прежде всего зависит от максимальной температуры газа в зоне реакции согласно отношению

$$S_l^2 \sim \exp(-E/RT_{q,\text{max}}),\tag{21}$$

а также от состава смеси. При этом величина $T_{g,\max}$ также определяется коэффициентом α_V и другими параметрами пористой среды.

Условие $S_l = u_q$ (или $u_w = 0$) легко нарушается в системе при небольших изменениях калорийности смеси или расхода газа. Уникальность свойств волны ФГГ заключается в том, что если при данном соотношении параметров скорость горения смеси недостаточна для компенсации скорости набегающего потока газа $(S_l < u_q)$ и в этом смысле данная смесь для системы «плохо» горит, то автоматически включается конвективно-кондуктивный тепловой рекуперативный цикл с конвективным потоком, обусловленным движением твердой фазы относительно реакционного фронта волны [16]. Это ведет к росту температуры в зоне реакции и, соответственно, к увеличению скорости горения смеси в волне $S_{l,1}$, где $S_{l,1} > S_l$ («спутные» волны $\Phi\Gamma\Gamma$).

Аналогично появление в системе «хорошо горючей» смеси (когда $S_l > u_g$) вызывает «инверсию» работы теплового рекуперативного цикла в волне, при котором также автоматически происходит снижение скорости горения данной смеси путем уменьшения температуры зоны реакции («встречный» режим распространения волны $\Phi\Gamma\Gamma$).

Действительно, рассмотрим с этой точки зрения экспериментальные данные на рис. 4. Перепишем (20), выражая в явном виде связь скорости горения S_l с параметрами волны $\Phi\Gamma\Gamma$:

$$S_l/u_q = 1 - \gamma (1 - \Delta T'_{ad}/\Delta T_{s,\text{max}}), \quad (22)$$

где $\gamma = c_g \rho_g / c_s \rho_s \sim O(10^{-3})$ — малый параметр.

Будем использовать (22) для изучения отклика системы при «мгновенном» переключении смеси с ультрабедной на ультрабогатую (эквивалентную по калорийности). Варьируя (22) при условии $\Delta T'_{ad} = {\rm const.}$ получим

$$\delta T_{s,\text{max}} = -\Delta T_{s,\text{max}}^2 \delta S_l / \gamma \Delta T_{ad}' u_g.$$
 (23)

При переходе от ультрабедных составов к ультрабогатым вследствие снижения генерации радикалов в последних (см. п. 1) скорость горения смеси уменьшается ($\delta S_l < 0$), т. е. в систему попадает относительно «плохо горящая смесь». При этом, как видно из (23), в системе

происходит модификация тепловой структуры, приводящая к росту максимальной температуры каркаса ($\delta T_{s,\max} > 0$). Последнее вызывает увеличение температуры газа $T_{g,\max}$ в зоне реакции, ускорение реакций разветвления цепей радикалов, что приводит к росту S_l и в итоге способствует стабильному горению ультрабогатой смеси в волне $\Phi\Gamma\Gamma$. С учетом того, что $E/RT_{g,\max} \sim O(10)$ по (21), значения S_l с увеличением $T_{g,\max}$ нарастают довольно быстро:

$$\delta S_l/S_l = E\delta T_{g,\text{max}}/RT_{g,\text{max}}^2.$$
 (24)

Таким образом, соотношения (23), (24) описывают отрицательную обратную связь в волне $\Phi\Gamma\Gamma$, направленную на удержание стабильного горения, при переходе от ультрабедных составов к ультрабогатым. В эксперименте (см. рис. 4) при этом регистрируется характерное увеличение максимальной температуры каркаса $\delta T_{s,\max} \cong 300~{\rm K}$ и скорости распространения фронта горения волны $\delta u_w \equiv -\delta S_l \cong 2.6 \cdot 10^{-5}~{\rm m/c}$ (по данным для смесей с $\Phi = 0.37$; 2,58 при $G = 0.12~{\rm kr/(m^2 \cdot c)}$, см. табл. 2).

Отсюда следует вывод, что избыток топлива в исходных реагентах (ввиду снижения генерации радикалов ОН, О и Н в результате повышенного ингибирования радикалов Н метаном в реакции $H+CH_4=CH_3+H_2$) приводит как к росту зоны предварительного подогрева, расширению зоны реакции и снижению тепловыделения (см. п. 1), так и к уменьшению массовой скорости горения смеси (росту u_w) и увеличению максимальной температуры каркаса в волне $\Phi\Gamma\Gamma$.

Подход с точки зрения кинетических свойств состава позволяет по-новому интерпретировать и зависимость скорости распространения фронта волны от расхода газа.

Выясним, как меняется положение «стационарных» точек $u_w=0$ зависимости $u_w(G)$ при увеличении расхода смеси в два раза (см. рис. $4, \delta$). Как следует из (20), при этом выполняются соотношения $S_{l,1}=u_g$ и $\Delta T_{s,\max,1}=\Delta T'_{ad,1}$. При росте расхода скорость горения смеси $S_{l,2}$ в волне должна увеличиться настолько, чтобы стабилизировать пламя в возросшем потоке газа: $S_{l,2}=2u_g$. Это возможно только в случае перехода к смесям с большей калорийностью (большим адиабатическим разогревом): $\Delta T'_{ad,2}>\Delta T'_{ad,1}$ (и, следовательно, $\Delta T_{s,\max,2}>\Delta T_{s,\max,1}$), что полностью со-

ответствует экспериментальным результатам на рис. 4,a. Данный факт наблюдается в эксперименте и как смещение точек $u_w=0$ в сторону составов, более близких к стехиометрическому при увеличении расхода газа (см. рис. $4, \delta$). Это очевидно для бедных смесей, в то время как для богатых составов вблизи положения $u_w=0$ при G=0.24 кг/(м 2 ·с) соответствующие измерения не проводились (см. темные точки на рис. $4, \delta$).

Рассмотрим поведение системы при увеличении расхода газа в случае «спутных» режимов распространения волны ФГГ. «Мгновенное» увеличение скорости потока газа в два раза, естественно, приводит к уменьшению левой части уравнения (22). Из правой же части (22) видно, что эта ситуация ввиду малости коэффициента γ должна вызвать очень быстрый рост максимальной температуры каркаса. Последнее, как отмечалось выше, вызывает быстрый рост массовой скорости горения смеси, и, таким образом, обе части соотношения (22) уравниваются в некотором новом состоянии параметров системы, для которого характерно $T_{s, {
m max}, 2} > T_{s, {
m max}, 1}$ (т. е. известная «сильная» зависимость $T_{s,\max}(G)$ для «спутных» режимов волны $\Phi\Gamma\Gamma$ [1]) и, как видно из (22), всегда $S_{l,2} < 2S_{l,1}$. Для скорости распространения фронта волны это означает увеличение u_w более чем в два раза, что согласуется с экспериментальными данными на рис. 4, 6.

В заключение отметим, что полученные численные решения для G = 0.12 и $0.24 \text{ кг/(м}^2 \cdot \text{c})$ соответствуют «нормальной» динамической области, так как (в соответствии с классификацией, введенной в [23]) характеризуются малыми значениями критерия температурной гетерогенности φ_1 = $\Delta T_{s-g,i}/\Delta T_{ad}'$: φ_1' = 0,17 \div 0,29 при G = $0.12 \text{ kr/(м}^2 \cdot \text{c})$ и $\varphi_1 = 0.31 \div 0.42$ для G = $0.24~{
m kr/(m^2 \cdot c)}$. Здесь $\Delta T_{s-g,i} = T_{s,i} - T_{g,i}$. Более близким к стехиометрии составам соответствуют меньшие значения коэффициента φ_1 . В этой области параметров волна ФГГ характеризуется практическим совпадением профилей температур газа и каркаса в зоне предварительного подогрева, а также увеличением крутизны михельсоновского профиля и быстрым нарастанием максимальной температуры каркаса с ростом расхода газа [20, 23].

Можно показать [23], что в случае достаточно больших расходов газа ($G \geqslant 1 \text{ кг/(м}^2 \cdot \text{c})$), когда выполняется условие $\varphi_1 \rightarrow 1$, макси-

мальная температура в волне практически не растет с увеличением расхода газа $(T_{s,\max},T_{g,\max}\approx {\rm const}),$ а уровень генерации радикалов, необходимый для поддержания стабильного горения, достигается за счет увеличения длины зоны предварительного подогрева пропорционально расходу. Скорость горения и скорость распространения фронта также увеличиваются пропорционально расходу газа $(S_l\sim G,u_w\sim G),$ чему соответствует специфический вид автомодельного решения для волны $\Phi\Gamma\Gamma$ [23].

Важно отметить, что вторая «стратегия» удержания системой стабильного горения в возросшем потоке газа, направленная на модификацию тепловой структуры волны в сторону сильного расширения зоны предварительного подогрева (без существенного изменения $T_{s,\max}$ и $T_{q,\max}$), гораздо менее эффективна в отличие от первой (осуществляемой посредством роста $T_{s,\max}$), поскольку скорость цепных реакций сильно зависит именно от максимальной температуры газа в волне. Данное обстоятельство, по-видимому, обусловливает повышенную склонность к срыву устойчивого горения (явление наклонной неустойчивости фронта [24]) именно «спутных» режимов волн ФГГ по мере увеличения расхода газа. Понятнее становится и экспериментальный факт [24] отсутствия такой неустойчивости фронта в случае «встречных» режимов распространения волн ФГГ, так как согласно рассмотренной выше точке зрения в этой ситуации смесь в системе характеризуется «повышенной горючестью».

Автор выражает искреннюю признательность А. В. Савельеву (University of Illinois at Chicago) за предоставленные экспериментальные данные.

ЛИТЕРАТУРА

- 1. **Babkin V. S.** Filtrational combustion of gases. Present state of affairs and prospects // Pure and Appl. Chem. 1993. V. 65. P. 335–344.
- Hoffman J. G., Echigo R., Yoshida H., Tada S. Experimental study on combustion in a porous media with a reciprocating flow system // Combust. Flame. 1997. V. 111. P. 32–46.
- 3. Drayton M. K., Saveliev A. V., Kennedy L. A., et al. Superadiabatic partial oxidation of methane in reciprocal and counterflow porous burners // The 27th Symp. (Intern.) on Combustion. Pittsburgh: The Combustion Inst., 1998. P. 1361–1367.
- 4. **Hsu P. F., Matthews R. D.** The necessity of using detailed kinetics in models for premixed

combustion within porous media // Combust. Flame. 1993. V. 93. P. 457-466.

- 5. Kennedy L. A., Binque J. P., Drayton M. K., et al. Chemical structures of filtration combustion waves in a porous media // The 27th Symp. (Intern.) on Combustion. Workin-Progress Posters. Pittsburgh, PA, 1998. P. 403.
- Henneke M. R., Ellzey J. L. Modeling of filtration combustion waves in porous media // Combust. Flame. 1999. V. 117. P. 832–840.
- 7. Kennedy L. A., Binque J. P., Saveliev A. V., et al. Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel rich conditions // 28th Intern. Symp. on Combustion: Abstracts. Pittsburgh, PA, 2000. P. 26.
- 8. Smith G. P., Golden D. M., Frenklach M., et al. GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/
- Zhdanok S. A., Kennedy L. A., Koester G. Combustion wave in a diluted methane-air mixture under filtration in a packed bed // Combust. Flame. 1995. V. 100. P. 221–231.
- Foutko S. I., Shabunya S. I., Zhdanok S. A., Kennedy L. A. Superadiabatic combustion wave in a diluted methane-air mixture under filtration in a packed bed // 26th (Intern.) Symp. on Combustion. Pittsburgh, PA, 1997. P. 3377–3382.
- 11. Wakao N., Kaguei S., Funazkri T. Effect of fluid dispersion coefficients on particle-tofluid heat transfer coefficients in packed beds. Correlation of Nusselt numbers // Chem. Eng. Sci. 1979. V. 34. P. 325–336.
- 12. **Бабкин В. С., Дробышевич В. И., Лаевский Ю. М., Потытняков С. И.** Фильтрационное горение газов // Физика горения и взрыва. 1983. Т. 19, № 2. С. 17–26.
- 13. Kee R. J., Rupley F. M., Miller J. A. CHENKIN-II. Sandia Report SAND89-8009B UC-706. Sandia National Laboratories, Livermore, CA, 1989.
- Westbrook C. K., Dryer F. L. Chemical kinetics and modeling of combustion processes // 18th (Intern.) Symp. on Combustion. Pittsburgh, PA, 1981. P. 749-764.

- 15. **Футько С. И.** Химическая структура волн фильтрационного горения газов в инертных пористых средах. Ч. 2. Ультраобогащённые метановоздушные составы. Минск, 2002. (Препр. / НАНБ. ИТМО, № 2).
- 16. **Лаевский Ю. М., Бабкин В. С.** Фильтрационное горение газов // Распространение тепловых волн в гетерогенных средах. Новосибирск: Наука, 1988. С. 118–120.
- 17. **Футько С. И.** Химическая структура волн фильтрационного горения газов в инертных пористых средах. Ч. 1. Ультраобедненные метановоздушные составы. Минск, 2002. (Препр. / НАНБ. ИТМО, № 1).
- 18. Futko S. I., Saveliev A. V., Kennedy L. A., Zhdanok S. A. Reaction path analysis of the structure of rich methane-air filtrational combustion wave // III Intern. School-seminar «Modern Problems of Combustion and its Applications»: Contributed Papers. Minsk, Belarus, 1999.
- 19. **Peters N., Williams F. A.** The asymptotic structure of stoichiometric methane-air flames // Combust. Flame. 1987. V. 68. P. 185–207.
- 20. Futko S. I., Zhdanok S. A. Influence of mixture composition on high-temperature limits in filtration combustion wave: a parametric study // Proc. Nonequilibrium Processes and their Applications / S. A. Zhdanok (Ed.). Minsk: Belarus Acad. of Sci., 2000. P. 114.
- Гаврилюк В. В., Дмитренко Ю. М., Жданок С. А. и др. Исследование процесса конверсии метана в водород в режиме одиночной волны фильтрационного горения // IV Минский междунар. форум. Минск, 2000. Т. 5. С. 43–49.
- 22. **Математическая** теория горения и взрыва / Я. Б. Зельдович, Г. И. Баренблатт, В. Б. Либрович, Г. М. Махвиладзе М.: Наука, 1980.
- 23. Futko S. I. A theoretical study on upper temperatures limits attainable in filtrational combustion wave // 28th Intern. Symp. on Combustion: WIP Abstracts. Edinburg: The Combustion Inst., 2000. P. 407.
- 24. Минаев С. С., Потытняков С. И., Бабкин В. С. О неустойчивости фронта пламени при фильтрационном горении газов // Физика горения и взрыва. 1994. Т. 30, № 3. С. 49–54.

Поступила в редакцию 16/X 2001 г., в окончательном варианте — 24/VI 2002 г.