УДК 517.946.53

ВЛИЯНИЕ ФАЗОВОГО ПЕРЕХОДА НА ПРОЦЕСС ВОСПЛАМЕНЕНИЯ

С. И. Худяев

Отдел математики (филиал, г. Сыктывкар) Института математики и механики УрО РАН 167000 Сыктывкар, khudyaev@syktsu.ru; khudyaev@dm.komisc.ru

Получена прямая связь в виде дифференциального уравнения первого порядка между глубиной фазового превращения (положением фазовой границы) и параметром Франк-Каменецкого, характеризующим интенсивность химического тепловыделения. Как частный случай из этого уравнения следует решение задачи, ранее полученное для цилиндрического и плоскопараллельного реакторов. Наличие устойчивого промежуточного положения межфазной границы обобщено на симметричные области любой (даже дробной) размерности, что, как оказывается, не лишено физического содержания.

Ключевые слова: воспламенение, фазовая граница, полное фазовое превращение, задача Стефана, устойчивость.

При температуре стенок реактора (T_0) ниже температуры отвердевания жидкой реагирующей среды в реакторе (T_*) возникает фронтальное фазовое превращение (отверждение) реагента, граница которого r_* (в симметричном случае) перемещается в глубь вещества (уменьшается). Однако этому перемещению препятствует химическое тепловыделение в объеме. Как было показано в работах [1, 2], в ситуации такого конкурентного взаимодействия объемного тепловыделения и фронтального фазового перехода априори могут быть реализованы следующие возможные режимы протекания реакции: тепловой взрыв, полное фазовое превращение (отверждение) и установление промежуточного положения фазовой границы; были описаны области параметров, в которых эти режимы реализуются.

Расчеты в [1, 2] выполнены прямым интегрированием соответствующих уравнений в стационарной постановке, включающих, в частности, условия Стефана на фазовой границе. Для размерностей больше двух такое интегрирование невозможно. Однако найденная в данной работе связь между глубиной фазового превращения и параметром Франк-Каменецкого позволяет в общем случае решить задачу о структуре характерных областей параметров с помощью численного решения простого дифференциального уравнения

первого порядка. В работе приведены результаты численного решения этого уравнения для случая шара и некоторые примеры задач других «размерностей».

1. Формулировка модели. Математический анализ конкурентного взаимодействия объемного химического тепловыделения и фронтального фазового превращения жидкости может быть выполнен в рамках следующей модели Стефана:

$$0 < \xi < \xi_*: \qquad \varepsilon \frac{\partial \theta}{\partial \tau} = \frac{\partial^2 \theta}{\partial \xi^2} + \frac{n+1}{\xi} \frac{\partial \theta}{\partial \xi} + \frac{\theta}{1+\beta \theta}; \quad (1)$$

$$\xi_* < \xi < 1:$$
 $\varepsilon \nu \frac{\partial \theta}{\partial \tau} = \frac{\partial^2 \theta}{\partial \xi^2} + \frac{n+1}{\xi} \frac{\partial \theta}{\partial \xi};$ (2)

$$\xi = \xi_*: \quad \theta = 0; \ \frac{d\xi_*}{d\tau} + \frac{\partial \theta}{\partial \xi}\Big|_{\xi_* = 0} = \lambda \frac{\partial \theta}{\partial \xi}\Big|_{\xi_* + 0}; (3)$$

$$\xi = 0: \quad \frac{\partial \theta}{\partial \xi} = 0,$$

$$\xi = 1: \quad \theta = \theta_0 < 0.$$
(4)

Здесь

$$\theta = \frac{E(T - T_*)}{RT_*^2}, \quad \xi = \frac{r}{r_0}, \quad \xi_* = \frac{r_*}{r_0},$$

$$\tau = t\lambda_1 \frac{RT_*^2}{r_0^2 Q_2 E};$$
(5)

Работа выполнена при поддержке Российского фонда фундаментальных исследований (номер проекта 00-01-00723).

С. И. Худяев

$$\delta = \frac{r_0^2 Q_1 E k(T_*)}{\lambda_1 R T_*^2}, \quad \beta = \frac{R T_*}{E}, \tag{6}$$

$$\lambda = \frac{\lambda_2}{\lambda_1}, \quad \theta_0 = \frac{E(T_0 - T_*)}{RT_*^2} < 0;$$

$$\varepsilon = \frac{c_1 \rho_1 R T_*^2}{Q_2 E}, \quad \nu = \frac{\lambda_1 c_2 \rho_2}{\lambda_2 c_1 \rho_1},$$

$$k(T) = k_0 \exp \frac{E}{RT}.$$
(7)

Основные переменные (5) и параметры (6), (7) определяются теплофизикой фаз и кинетикой химической реакции. Индекс 1 относится к жидкой фазе ($\xi < \xi_*$), индекс 2 — к твердой фазе, k(T) — аррениусова зависимость скорости химической реакции от температуры, Q_1 теплота реакции, E — энергия активации, R универсальная газовая постоянная, k_0 — нормирующий множитель $(k_0 = k(\infty)), c_1, c_2, \rho_1,$ $\rho_2, \lambda_1, \lambda_2$ — теплоемкости фаз, их плотности и теплопроводности, Q_2 — теплота фазового перехода. Соотношения (3) (условия Стефана) задают фактически уравнение движения фазовой границы ξ_* , вдоль которой $\theta = 0$ $(T = T_*)$. Величина θ_0 характеризует степень переохлаждения стенки ($\xi = 1$). В дальнейшем удобно использовать также обозначение

$$s = -\lambda \theta_0 / 2. \tag{8}$$

В уравнении (2) предполагается отсутствие химической реакции в твердой фазе ($\xi > \xi_*$). Радиальная часть оператора Лапласа в (1) и (2) (дифференциальные выражения в правой части (1) и (2)) записана в пространстве размерности n+2, так что значение n=-1 отвечает плоскопараллельной симметричной полосе $(-1<\xi<1)$, n=0— цилиндрической симметрии, n=1— сферической симметрии.

2. Стационарная задача. Количество безразмерных параметров существенно сокращается при рассмотрении стационарной задачи, когда временные производные в (1)–(3) равны нулю. Если дополнительно принять допущение Франк-Каменецкого $\beta \ll 1$ [3], то приходим к задаче

$$\theta'' + \frac{n+1}{\xi}\theta' + \delta e^{\theta} = 0, \quad 0 < \xi < \xi_*, \quad (9)$$

$$\theta'' + \frac{n+1}{\xi}\theta' = 0, \quad \xi_* < \xi < 1,$$
 (10)

$$\theta = 0, \quad \theta'_{-} = \lambda \theta'_{+}, \quad \xi = \xi_{*}, \tag{11}$$

$$\theta' = 0, \quad \xi = 0; \quad \theta = \theta_0 < 0, \quad \xi = 1. \quad (12)$$

Здесь θ'_{\pm} — предельные значения производной θ' справа и слева от ξ_* . В области $\xi > \xi_*$ (см. (10))

$$\theta' = \frac{c}{\xi^{n+1}}, \ \theta = c_1 - \frac{c}{n} \xi^{-n}, \ c_1 = \frac{c}{n \xi_*^n}, \ c = \frac{n \xi_*^n \theta_0}{1 - \xi_*^n},$$

и, следовательно, при $\xi > \xi_*$

$$\theta = \frac{\theta_0}{1 - \xi_*^n} \left(1 - \left(\frac{\xi_*}{\xi} \right)^n \right), \quad \theta'_+ = \frac{n\theta_0}{\xi_* (1 - \xi_*^n)}. \quad (13)$$

При $n \to 0$ из (13) следуют предельные значения:

$$\theta'_{+} = \frac{\theta_{0}}{\xi_{*} \ln(1/\xi_{*})}; \quad \theta = \frac{\theta_{0}}{\ln \xi_{*}^{-1}} \ln \frac{\xi}{\xi_{*}},$$

$$n = 0, \quad \xi > \xi_{*}. \quad (14)$$

Для области $\xi < \xi_*$ имеем уравнение (9) и условия

$$\theta'(0) = 0, \quad \theta(\xi_*) = 0,$$

$$\theta'(\xi_*) = \theta'_- = \lambda \theta'_+ = n \lambda \theta_0 \xi_*^{-1} (1 - \xi_*^n)^{-1} \quad (15)$$

(см. (11), (12)). Используя обозначение (8), делая в (9) замену переменной $x=\xi/\xi_*$ и полагая $\delta_*=\delta\xi_*^2$, приходим к задаче

$$\theta_{xx}'' + \frac{n+1}{x}\theta_x' + \delta_* e^{\theta} = 0, \quad \theta'(0) = 0, \quad \theta(1) = 0,$$

$$\theta'(1) = -\frac{2ns}{1 - \xi_*^n} = -q. \tag{16}$$

Дополнительное граничное условие в (16) позволяет, в принципе, кроме $\theta(x)$ определить и величину ξ_* .

Существует прямая связь между δ и ξ_* , что дает возможность определять $\xi_*(\delta)$ (или обратную зависимость $\delta(\xi_*)$) независимо от нахождения поля температуры.

3. Понижение порядка уравнения (16). Решая задачу Коши для уравнения (16) при $\theta(1)=0, \ \theta'(1)=-q$ в направлении убывания x, мы можем выполнить условие $\theta'(0)=0$ за счет выбора q (при фиксированном δ_*) или за счет выбора δ_* (при фиксированном q). Это стандартная ситуация метода стрельбы при решении двухточечной краевой задачи. Однако в данной задаче связь между δ_* и q, обеспечивающую

выполнение условия $\theta'(0) = 0$, удается найти в виде дифференциального уравнения первого порядка. Положим (ср. [4])

$$y = \ln x, \ u = -\frac{d\theta}{dy}; \ p = \frac{du}{dy} + nu.$$
 (17)

Отсюда $x^2 \left(\theta_{xx}'' + \frac{n+1}{x} \theta_x' \right) = -p$. Следовательно, в силу (16)

$$p = \delta_* x^2 e^{\theta} = \delta_* e^{\theta + 2y}. \tag{18}$$

Дифференцируя это тождество по u, получаем

$$\frac{dp}{du} = p\left(\frac{d\theta}{du} + 2\frac{dy}{du}\right) = p\left(\frac{d\theta}{dy} + 2\right)\frac{dy}{du} = p\frac{2-u}{p-nu}.$$
(19)

Итак, переменные p и u связаны уравнением первого порядка (19). Условие $\theta_x'|_{x=0}=0$ вместе с (18) дает начальное условие для (19): p=0 при u=0. Условия $\theta(1)=0$, $\theta_x'=-q=-u$ означают, что, решая уравнение (19) с условием p(0)=0 до точки u=q (при x=1), из (18) получаем $p=\delta_*$. Итак, искомая связь между δ_* и q записывается в виде соотношения

$$p(q) = \delta_*. \tag{20}$$

Соотношение (20) или зависимость $\delta_*(q)$ подчиняются, очевидно, тому же уравнению (19):

$$\frac{d\delta_*}{dq} = \delta_* \frac{2-q}{\delta_* - nq}, \quad \delta_*(0) = 0, \quad q = \frac{2ns}{1 - \xi_*^n}. \quad (21)$$

Это уравнение и позволяет независимо от нахождения профиля температуры устанавливать связь между δ_* и q.

4. Случай n=0. При n=0 уравнение (21) допускает элементарное интегрирование. Предполагая $\delta_*(q) \neq 0$, имеем

$$\delta_*(q) = \frac{q}{2}(4-q).$$
 (22)

С учетом $\delta_* = \delta \xi_*^2$, $q = 2s/\ln(\xi_*^{-1})$ (см. (14),~(16)) связь между δ и ξ_* получаем в виле

$$\delta(\xi_*) = \frac{2s}{\xi_*^2 \ln(\xi_*^{-1})} \left(2 - \frac{s}{\ln(\xi_*^{-1})} \right). \tag{23}$$

Другим способом этот результат для цилиндрической симметрии был получен в работе [1]. Из (23) вытекает, что $\delta(\xi_*) \to \infty$ при $\xi_* \to 0$ и $\delta(\xi_*) \to 0$ при $\xi_* \to \exp(-s/2)$, так что при

каждом $\delta > 0$ уравнение $\delta(\xi_*) = \delta$ имеет корень ξ_* . В отличие от классической задачи о тепловом взрыве стационарная задача (9)–(12) разрешима при любом $\delta > 0$. Однако нетрудно усмотреть, что на падающих участках зависимости $\delta(\xi_*)$ решение неустойчиво. Из физического смысла величины δ , характеризующей интенсивность объемного тепловыделения, и глубины фазового превращения ξ_* легко понять, что уменьшение δ способствует фазовому переходу и должно приводить к уменьшению ξ_* , так что физический смысл могут иметь решения ξ_* , попадающие на возрастающий участок $\delta(\xi_*)$. Исследуя уравнение (23) на экстремум, убеждаемся, что равенство $\delta' = 0$ приводит к квадратному уравнению

$$f^2 - (1+s)f + 2s = 0, \quad f = s(\ln(\xi_*^{-1}))^{-1}, (24)$$

и к двум корням

$$f_{\pm} = \frac{1}{2} [1 + s \pm \sqrt{(1-s)^2 - 4s}].$$
 (25)

С учетом $f_{+}f_{-}=2s$ имеем точки экстремума

$$\xi_*^- = \exp(-f_+/2), \quad \xi_*^+ = \exp(-f_-/2) \quad (26)$$

и два пороговых значения δ :

$$\delta_{-} = 2f_{-}(2 - f_{-}) \exp f_{+},$$

$$\delta_{+} = 2f_{+}(2 - f_{+}) \exp f_{-}.$$
(27)

В интервале $\delta_- < \delta < \delta_+$ уравнение $\delta(\xi_*) = \delta$ при каждом δ имеет три корня ξ_* , крайние из которых попадают на убывающие участки $\delta(\xi_*)$ и, следовательно, неустойчивы, а промежуточный приходится на возрастающий участок $\delta(\xi_*)$, т. е. на интервал

$$\xi_*^- < \xi_* < \xi_*^+,$$
 (28)

и этот последний корень и представляет устойчивое стационарное положение фазовой границы.

Формулы (25), а тем самым и (26), (27), (28) справедливы лишь в интервале

$$0 < s < s_* = 3 - 2\sqrt{2} \approx 0.172. \tag{29}$$

При $s > s_*$ зависимость (23) становится монотонно убывающей. Таким образом, область устойчивого стационарного решения (область трех решений) в плоскости параметров (δ , s) определяется неравенствами

$$0 < s < s_* \approx 0.172, \quad \delta_{-}(s) < \delta < \delta_{+}(s).$$
 (30)

С. И. Худяев 41

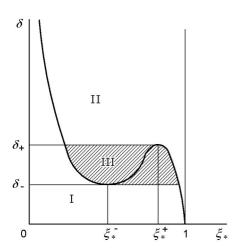


Рис. 1. Зависимость $\delta(\xi_*)$ при фиксированном значении $s < s_*$:

I — область полного фазового превращения, II — область теплового взрыва, III — область устойчивого промежуточного положения фазовой границы

Верхнее пороговое значение $\delta_{+} = \delta(\xi_{*}^{+})$ выражает предел теплового взрыва (при $\delta > \delta_{+}$), нижнее значение $\delta_{-} = \delta(\xi_{*}^{-})$ — предел полного фазового превращения (при $\delta < \delta_{-}$).

Можно ожидать, что и при $s>s_*$ существует зависимость $\delta_{cr}(s)$, разделяющая нестационарные режимы полного фазового превращения и теплового взрыва. В рамках стационарной задачи эта зависимость, вообще говоря, не определяется. К приближенному расчету $\delta_{cr}(s)$ можно подойти следующим образом. Предел теплового взрыва в цилиндре радиуса ξ_* (см. (9) при n=0, (11), (12)) равен $\delta_{cr}=2\xi_*^{-2}$ (в цилиндре радиуса 1 $\delta_{cr}=2$). Это максимально возможное значение δ согласно (23) достигается при $s(\ln(\xi_*^{-1}))^{-1}=1$, т. е. при $\xi_*=\exp(-s)$, и, следовательно,

$$\delta_{cr}(s) \approx 2e^{2s}. (31)$$

На рис. 1 схематически представлена зависимость (23) при $s < s_*$. Заштрихованная область III — область притяжения устойчивых решений, II — область теплового взрыва $(\delta > \delta_*)$, I — область полного фазового превращения $(\delta < \delta_-)$. На рис. 2 в плоскости параметров (δ, s) штриховой линией показаны зависимости $\delta_{\pm}(s)$, которые сливаются и исчезают при $s = s_*$, сплошной линией — приближенная зависимость (31); цифрой III обозначена область устойчивого промежуточного положения фазовой границы, II — область теплового взрыва, I — область полного фазового превращения.

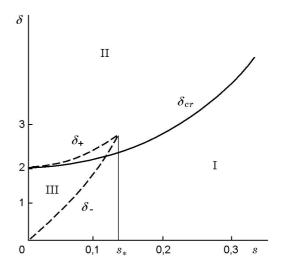


Рис. 2. Диаграмма характерных областей в плоскости (δ,s) :

I-III — те же области, что на рис. 2

5. Случай n=-1. Рис. 1 и 2 заимствованы из работы [1], где анализируется случай цилиндрической симметрии. Наличие аналитической зависимости (23) позволяет здесь детально исследовать пороговые явления как по параметру s, так и по параметру δ . В случае n=-1 (плоскопараллельная полоса) уравнение (21) также интегрируется, но связь между δ_* и q получается в виде трансцендентного соотношения

$$\operatorname{ch}^{2}\left(\frac{\delta_{*}}{2} + \frac{q^{2}}{4}\right)^{1/2} = 1 + \frac{q^{2}}{2\delta_{*}}.$$
 (32)

При n=-1 из (16) имеем $q=-2s\xi_*(1-\xi_*)^{-1}$ и зависимость $\delta(\xi_*)$ или $\xi_*(\delta)$ с учетом $\delta_*=\xi_*^2\delta$ получаем в виде

$$\operatorname{ch}^{2} \xi_{*} \left(\frac{\delta}{2} + \frac{s^{2}}{(1 - \xi_{*})^{2}} \right)^{1/2} = 1 + \frac{2s^{2}}{\delta (1 - \xi_{*})^{2}}.$$
 (33)

Можно убедиться, что и здесь существует пороговое значение $s=s_*$, выше которого зависимость $\delta(\xi_*)$ монотонно убывающая, а при $s< s_*$, как и на рис. 1, эта кривая имеет экстремумы. Качественно сохраняется картина и в плоскости (δ,s) (см. рис. 2), за исключением численных значений s_* и $\delta_+(0)$. Отметим, что этот случай проанализирован в работе [2], где установлено, что

$$s_* \approx 0.21$$
, $\delta_+(0) \approx 0.878$, $\delta_-(0) = 0$. (34)

Впрочем, из уравнения (21) следует, что максимум $\delta_*(q)$ при любом n достигается в точке

 $q=2,\ {
m u}\ {
m max}\,\delta_*(q)=\delta_+$ в силу (32) находится как корень уравнения

$$\operatorname{ch}^{2}\left(\frac{\delta}{2}+1\right)^{1/2}=1+\frac{2}{\delta},$$
 (35)

откуда и следует, что $\delta_+ = \delta_+|_{s=0} \approx 0.878$. Для величин $\delta_\pm(s)$ справедливы асимптотические выражения при $s \ll 1$ [2]:

$$\delta_{+}(s) \approx 0.878(1 + 2s + ...),$$

$$\delta_{-}(s) \approx 8s \left(1 - \frac{2}{3}s + ...\right).$$
(36)

6. Случай n > 0. При n > 0 элементарное интегрирование уравнения (21) невозможно. Поведение ненулевого решения существенно зависит от структуры особых точек $\delta_* = 0$, q = 0 и $\delta_* = 2n$, q = 2. Начало координат является седловой особой точкой, одна из сепаратрис которой представляет собой тривиальное решение $\delta_* \equiv 0$. Нас интересует, конечно, другая, ненулевая, сепаратриса с угловым коэффициентом n+2 при q=0. С увеличением *q* эта сепаратриса попадает в область влияния другой особой точки: $q=2, \ \delta_*=2n$. Легко установить, что при 0 < n < 8 эта особая точка является фокусом и сепаратриса седла, как и все интегральные кривые, закручивается вокруг нее спиралью, совершая бесконечное число витков. Это обстоятельство свидетельствует, между прочим, о сложной структуре множества решений исходной стационарной задачи (9)–(12). Напротив, при $n \ge 8$ особая точка $q=2, \delta_*=2n$ оказывается узлом и сепаратриса седла, монотонно возрастая, входит в эту точку. В этом случае при любом $\delta_* < \delta_{cr} = 2n$ задача (9)-(12) имеет единственное решение.

При n>0 решение $\delta_*(q)$ уравнения (21) приходится находить численно, обеспечив выход из начала координат вдоль асимптотики решения

$$\delta_*(q) = (n+2)\left(q - \frac{q^2}{n+4}\right), \quad q \ll 1.$$
 (37)

Применялся стандартный метод Рунге — Кутта второго порядка точности. При этом зависимость $\delta(\xi_*)$ находили по формуле

$$\delta(\xi_*) = \frac{\delta_*(q)}{\xi_*^2}, \qquad q = \frac{2ns}{1 - \xi_*^n}. \tag{38}$$

Для соблюдения условия $\xi_* < 1$ расчетную кривую $\delta_*(q)$ необходимо учитывать при q > 2ns.

 $eta_*(q)$ при n=1

q	δ_*	q	δ_*
0,1	0,294	1,1	2,543
0,2	0,576	1,2	2,695
0,3	0,846	1,3	2,832
0,4	1,103	1,4	2,953
0,5	1,348	1,5	3,059
0,6	1,580	1,6	3,149
0,7	1,799	1,7	3,222
0,8	2,005	1,8	3,280
0,9	2,198	1,9	3,310
1,0	2,378	2,0	3,322

Качественная картина рис. 1 и 2 сохраняется и при n>0. Естественно, пороговые значения s_* и $\delta_\pm(s)$ численно будут другими. В частности, зависимость $s_*(n)$ убывает с увеличением n. Расчетные значения $\delta_*(q)$ при n=1 приведены в таблице. Используя данные таблицы, по формуле (38) можно рассчитать зависимость $\delta(\xi_*)$ для различных значений s и убедиться в существовании s_* и предельных значений $\delta_\pm(s)$. В данном случае при q=2 имеем $\delta_+(0)=3,322$, $\delta_-(0)=0$.

На рис. 3 приведены расчетные зависимости $\delta(\xi_*)$ при n=1. Кривая 1 отвечает значению s=0,05, кривая 2— значению s=0,1, кривая 3— значению s=0,2. На кривых 1 и 2 четко видны экстремумы, кривая 3 монотонна. Пороговое значение s_* в данном случае также лежит в интервале $0,1 < s_* < 0,2$, как и при n=0.

7. Другие «размерности». Как было показано в работе [5], уравнения вида (ср. (9))

$$\frac{d^2u}{dx^2} + \frac{\alpha}{x}\frac{du}{dx} + a(x)F(u) = 0, \tag{39}$$

где a(x) — положительная непостоянная функция (плотность распределения источников тепла F(u)), в результате подходящей замены переменной r=r(x) в ряде случаев могут быть сведены к уравнению с нераспределенным источником вида

$$\frac{d^2v}{dr^2} + \frac{\beta}{r}\frac{dv}{dr} + F(v) = 0, \ v(r(x)) = u(x), \quad (40)$$

С. И. Худяев

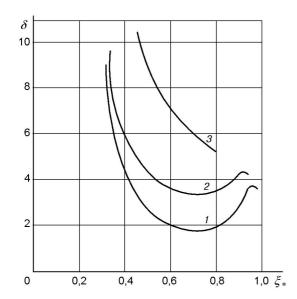


Рис. 3. Расчетные зависимости $\delta(\xi_*)$: 1, 2 — при $s < s_*$, s = 0.05 (1), 0,1 (2), 3 — при $s > s_*$, s = 0.2

ценой, быть может, изменения числового параметра α . При этом новое значение параметра β может быть как целым ($\beta \geqslant 3$), так и дробным. Такой переход реализуется при переменной r=r(x), подчиняющейся условиям

$$(r')^2 = a(x), (41)$$

$$r\left(r'' + \frac{\alpha}{x}r'\right) = \beta(r')^2. \tag{42}$$

Успех в применении такой замены обусловлен тем, что уравнение (42) удается элементарно проинтегрировать [5]:

$$\beta = 1: \quad r(x) = \begin{cases} B \exp(Ax^{1-\alpha}), & \alpha \neq 1, \\ Bx^A, & \alpha = 1; \end{cases} (43)$$

$$\beta \neq 1: \quad r(x) = \begin{cases} (Ax^{1-\alpha} + B)^{\frac{1}{1-\beta}}, & \alpha \neq 1, \\ (A\ln x + B)^{\frac{1}{1-\beta}}, & \alpha = 1. \end{cases}$$
(45)

Здесь A и B — произвольные постоянные. Формула (41) при этом описывает класс всех функций плотности a(x) в (39), от которых можно избавиться с помощью такой замены переменной. Как показывают формулы (43)–(46), этот класс содержит степенные, показательные, логарифмические и другие функции a(x).

Описанная замена переменной использовалась в ряде работ [6, 7], в которых уравнение (40) удавалось интегрировать в элементарных функциях и тем самым получать аналитическое решение исходного уравнения (39). Естественно, говорить при этом о нефизичности уравнения (40) с дробными или целыми $\beta > 2$ не приходится.

Не вдаваясь в проблему интегрирования уравнения (40), приведем несколько примеров перехода от уравнения (39) к уравнению (40) в дополнение к [6, 7].

1.
$$\alpha = 0$$
, $a(x) = (Ax + B)^{-3} \frac{A^2}{A}$.

Замена переменной $r = (Ax + B)^{-1/2}$ переводит уравнение (39) в уравнение (40) при $\beta = 3$.

2.
$$\alpha = 1$$
, $a(x) = \frac{A^2}{9x^2} (A \ln x + B)^{-8/3}$.

При $r = (A \ln x + B)^{-1/3}$ получаем (40) при $\beta = 4$.

3.
$$\alpha = 2$$
, $a(x) = \frac{A^2}{4x(Ax+B)^3}$.

При $r = (Ax^{-1} + B)^{-1/2}$ получаем (40) при $\beta = 3$.

4.
$$\alpha = 2$$
, $a(x) = \frac{4A^2}{x^4} (Ax^{-1} + B)^{-6}$.

При $r = (Ax^{-1} + B)^{-2}$ получаем (40) при $\beta = 3/2$.

Здесь A и B — постоянные.

ЛИТЕРАТУРА

- 1. **Худяев С. И., Столин А. М.** Анализ условий самовоспламенения в цилиндрическом объеме при фронтальном фазовом превращении // Хим. физика. 1984. Т. 3, № 11. С. 1616–1621.
- 2. **Худяев С. И.**, **Столин А. М.**, **Макла-ков С. В.** Тепловой взрыв в условиях фазового превращения // Физика горения и взрыва. 1983. Т. 19, № 5. С. 85–91.
- 3. **Франк-Каменецкий Д. А.** Диффузия и теплопередача в химической кинетике. М.: Наука, 1987.
- 4. **Вольперт А. И.**, **Худяев С. И.** Анализ в классах разрывных функций и уравнения математической физики. М.: Наука, 1975.

- 5. **Худяев С. И.** Некоторые оценки собственных значений сферически симметричных задач // Численные методы решения задач математической физики. М.: Наука, 1966. С. 68–74.
- 6. **Бостанджиян С. А., Мержанов А. Г., Ху-дяев С. И.** О гидродинамическом тепловом взрыве // Докл. АН СССР. 1965. Т. 163, № 1. С. 133–136.
- 7. **Бостанджиян С. А.**, **Мержанов А. Г.**, **Худяев С. И.** Некоторые задачи о неизотермическом стационарном течении вязкой жидкости // Журн. прикл. механики. и техн. физики. 1965. № 5. С. 45–50.

Поступила в редакцию 29/XI 2002 г.