УДК 532.593

ОЦЕНКА ТОЛЩИНЫ ФРОНТА УДАРНОЙ ВОЛНЫ В ЖИДКОСТИ НА ОСНОВЕ УРАВНЕНИЙ НАВЬЕ — СТОКСА С ПРИМЕНЕНИЕМ МОДИФИЦИРОВАННОЙ МОДЕЛИ ВАН-ДЕР-ВААЛЬСА

А. Б. Медведев

РФЯЦ, ВНИИ экспериментальной физики, 607188 Capoв, postmaster@ifv.vniief.ru

На основе решения уравнений Навье — Стокса с применением для уравнения состояния и коэффициентов переноса выражений, определяемых модифицированной моделью Ван-дер-Ваальса, рассчитаны профили стационарных плоских ударных волн в жидком аргоне. Результаты сопоставлены с выполненными ранее расчетами методом молекулярной динамики и расчетами на основе решения уравнений Навье — Стокса с использованием потенциала Леннарда — Джонса. Показано их удовлетворительное совпадение в диапазоне давлений ≈1 ÷ 40 ГПа. По-видимому, приблизительно такой же, как для аргона, точности оценки толщины ударных волн на основе рассматриваемого подхода можно ожидать и для других простых жидких веществ. Достоинством подхода является относительная простота выражений для термодинамических и кинетических характеристик жидкости, параметры которых могут быть достаточно легко откалиброваны на основе доступных экспериментальных данных о сжимаемости.

Ключевые слова: жидкость, уравнение состояния, вязкость, теплопроводность, модель Вандер-Ваальса, ударная волна.

ВВЕДЕНИЕ

Расчеты структуры ударных волн в жидкости могут быть выполнены методом молекулярной динамики (МД) при заданном потенциале межчастичного взаимодействия $\varphi(r)$ (r — межатомное расстояние). Первые подобные расчеты были проведены в [1] для жидкого аргона. При этом использовался относительно простой модельный потенциал в форме Леннарда — Джонса (LJ) $\varphi_{\text{LJ}}(r) = 4\varepsilon [(\sigma/r)^{12} - (\sigma/r)^{6}]$ (с константами $\varepsilon/k = 119.8$ K, k — постоянная Больцмана, $\sigma = 0.3405$ нм). Исследовался режим, в котором конечные (за фронтом ударной волны) значения давления и температуры составляли $p \approx 1 \div 3$ ГПа и $T \approx 500 \div 1000$ К. При более высоких параметрах ударного сжатия $(p \approx 40 \ \Gamma\Pi a, T \approx 12\,000 \ K)$ аналогичные расчеты для аргона были выполнены в [2] с использованием того же, что и в [1], потенциала $\varphi_{\rm LJ}(r)$.

В [2, 3] для определения структуры ударной волны в жидком аргоне использовался способ, основанный на решении уравнений Навье — Стокса (НС), моделирующих движение сплошной среды. При этом применялись данные об уравнении состояния (УРС) и коэффициентах переноса (КП; вязкость, тепло-

проводность), рассчитанные на основе потенциала $\varphi_{\rm LJ}(r)$ (с теми же параметрами, которые использовались в [1, 2]). Показано, что HC-расчеты структуры ударных волн неплохо согласуются с результатами МД-расчетов [1, 2]. Толщина ударных волн в обоих подходах составляла примерно несколько нанометров и уменьшалась с увеличением давления ударного сжатия. НС-подход, являясь менее строгим по сравнению с методом МД, в то же время более прост и менее затратен по сравнению с ним. Из-за этого он обычно и применяется при гидродинамических расчетах течений с большими градиентами в системах, содержащих большое число частип.

В настоящей работе, как и в [2, 3], для оценки толщины ударных волн применялся НС-способ моделирования, но с другим видом УРС и КП. В [2, 3] для них использовались выражения, которые получаются в относительно сложных независимых численных расчетах с применением модельного потенциала $\varphi_{\rm LJ}(r)$, результаты которых представляются интерполяционными формулами. Данный потенциал применим для моделирования УРС и КП лишь отдельного класса жидкостей (типа аргона) и в ограниченном диапазоне термодинамических состояний. При переходе к новым условиям, когда экспериментальные дан-

ные (в частности, по ударной или изотермической сжимаемости) не воспроизводятся с помощью потенциала $\varphi_{\rm LJ}(r)$, требуется изменение вида $\varphi(r)$ и проведение дополнительных (до согласования с экспериментом), достаточно трудоемких процедур определения термодинамических и кинетических характеристик жидкости, что неудобно на практике.

В настоящей работе для представления УРС применялась модифицированная модель Ван-дер-Ваальса (термодинамическая модель мВдВ) [4, 5], а для представления КП — опирающаяся на нее модель вязкости и теплопроводности [6–8] (модель КП полностью определяется функциями и параметрами УРС мВдВ). Модельные выражения мВдВ просты (аналитические), не требуют при калибровке на эксперимент привлечения промежуточных численных расчетов с различного вида потенциалами $\varphi(r)$. Подбор входящих в них функций и констант относительно легко реализуется на основе доступных экспериментальных данных (в частности, ударной сжимаемости жидкости).

Для проверки работоспособности рассматриваемой модели выполнен расчет профилей плотности, давления и т. п. во фронте ударных волн различной интенсивности в жидком аргоне в области состояний, соответствующей расчетным данным [1–3]. Полученные результаты довольно близки к результатам МД-моделирования [1, 2] и НС-моделирования [2, 3], что свидетельствует в пользу применимости настоящего простого подхода к описанию течений с большими градиентами в атомарных жидкостях.

ОПРЕДЕЛЕНИЕ МОДЕЛИ МВ_ДВ ДЛЯ АТОМАРНОЙ ЖИДКОСТИ

Термическое УРС модели мВдВ определяется [4, 5] в параметрической (посредством дополнительной внутренней переменной p_{rep}) форме соотношениями

$$p = p_{rep} + p_{att}(V), \tag{1}$$

$$p_{rep} = \frac{RT}{V - V_c(p_{rep})},\tag{2}$$

где V — удельный объем ($\rho=1/V$ — плотность); R — постоянная, равная универсальной газовой постоянной, деленной на атомную массу M; $p_{att}(V)$ — «давление притяжения» (в модели ВдВ $p_{att}(V)=-a/V^2$, $a={\rm const}$); p_{rep} —

«давление отталкивания», обусловленное кинетическим движением частиц (выражение (2) качественно сходно с формулой для давления в модели жидкости, состоящей из твердых сфер); V_c — коволюм («собственный» объем частиц). В модели ВдВ $V_c = \mathrm{const.}$ В модели мВдВ считается, что величина p_{rep} является причиной изменения коволюма, что отражено в (2) введением зависимости $V_c(p_{\it rep})$ (для модели жидкости в виде шариков это соответствовало бы введению переменности их диаметра). Функции $p_{att}(V)$ и $V_c(p_{rep})$ являются эмпирическими (свободными). Их задание полностью конкретизирует модель. Диапазон изменения переменной $p_{rep} \geqslant 0$ (предел $p_{rep} \rightarrow 0$ при $T = \mathrm{const}$ отвечает идеально-газовому состоянию). Предполагается, что функция $V_c(p_{ren})$ убывает по мере увеличения p_{rep} , модуль функции $p_{att}(V)$ уменьшается с ростом V (обе функции предполагаются такими, чтобы существовали интегралы энергии, определенные ниже в (7); например, функция $p_{att}(V) = -a/V^2$ удовлетворяет этому).

При использовании вместо зависимости $V_c(p_{rep})$ обратной для нее функции $p_{rep}(V_c)$ в переменных T, V_c соотношения (1), (2) принимают вид

$$p = p_{ren}(V_c) + p_{att}(V), \tag{3}$$

$$V = V_c + RT/p_{rep}(V_c). \tag{4}$$

Из (4) при T=0 следует, что $V=V_c$, и соотношение (3) представляет в этом случае уравнение для давления на «холодной» кривой

$$p_{\mathbf{x}}(V) = p_{rep}(V) + p_{att}(V). \tag{5}$$

При достаточно реалистичном выборе зависимостей $p_{att}(V)$ и $p_{rep}(V_c)$ (или, что эквивалентно, $V_c(p_{rep})$ вместо $p_{rep}(V_c)$) с помощью выражения (5) можно отразить характерные особенности сжатия жидкости при относительно низких температурах (в частности, ее ударную сжимаемость), что распространяет применимость модели ВдВ в область высоких плотностей.

Внутренняя энергия E модели мВдВ, удовлетворяющая асимптотике идеального газа при $V \to \infty$ ($T={\rm const}$), получается интегрированием уравнения термодинамической согласованности

$$\left(\frac{\partial E}{\partial V}\right)_T = T\left(\frac{\partial p}{\partial T}\right)_V - p. \tag{6}$$

Решение (6) для термического уравнения (1), (2) имеет вид

$$E = -\int_{0}^{p_{rep}} p_{rep} \left(\frac{dV_c(p_{rep})}{dp_{rep}} \right) dp_{rep} - \int_{0}^{V} p_{att}(V) dV + \frac{3}{2} RT.$$
 (7)

Термодинамическая модель мВдВ, определяемая формулами (1), (2), (7), при $V_c = \text{const}$ переходит в исходную модель ВдВ и так же, как и она, позволяет строить фазовые диаграммы жидкость — пар.

Наиболее простыми переменными модели являются T, p_{rep} (или, вместо p_{rep} , в случае представления модели в виде (3), (4) — переменная V_c). При проведении термодинамических расчетов сначала по этим переменным из (2) находится значение V, после чего из (1), (7) — p, E. Аналогичным образом по переменным T, p_{rep} могут быть рассчитаны по простым формулам энтропия, свободная энергия и другие величины. Отметим, что имеется [5, 8] обобщение модели (1), (2), (7) на случай, когда величины V_c и p_{att} зависят также от T (введение этой зависимости позволяет иногда улучшить описание эксперимента). Далее оно не используется.

На основе модели мВдВ можно оценить ряд кинетических коэффициентов жидкости и газа, в частности сдвиговой вязкости η и теплопроводности χ [6–8]. При представлении термического УРС в виде (1), (2) они определяются выражениями

$$\eta = \frac{3.12 \cdot 10^{-6} (MT)^{0.5} V}{(V - V_c)(MV_c)^{2/3}},\tag{8}$$

$$\chi = \frac{9.72 \cdot 10^{-2} (T/M)^{0.5} V}{(V - V_c)(MV_c)^{2/3}},\tag{9}$$

 $V,\ V_c - [{
m cm}^3/{
m r}],\ \eta - [{
m \Pia\cdot c}],\ \chi - [{
m Bt/(m\cdot K)}].$ Здесь $M,\ V,\ T,\ V_c = V_c(p_{rep})$ — те же величины, что и в уравнениях $(1),\ (2),\$ а численные значения коэффициентов установлены из условия перехода этих формул при $V\gg V_c$ в выражения для коэффициентов вязкости и теплопроводности, определяемые в строгой модели твердых сфер диаметром d [9]. При данном переходе полагается $V_c/N = 2\pi d^3/3$ (N=

const — число частиц в объеме V). Это соотношение строго выполняется в модели B_dB .

Расчеты УРС и КП модели мВдВ проводятся совместно по заданным параметрам T, p_{rep} . Если термодинамическая модель (1), (2), (7) конкретизирована (заданием функций $p_{att}(V)$ и $V_c(p_{rep})$), то конкретизированы также выражения для η (8) и χ (9). При удовлетворительном модельном воспроизведении экспериментальных характеристик p, V, T точность описания экспериментальных данных по вязкости и теплопроводности на основе (8), (9) в жидком и плотном газообразном состояниях обычно составляет ≈ 2 [6–8].

СХЕМА РАСЧЕТА ПРОФИЛЯ УДАРНОЙ ВОЛНЫ

При расчетах стационарного одномерного профиля ударной волны используется способ, аналогичный [2] (с некоторыми модификациями). Применяется система координат (рис. 1), в которой вещество движется вдоль оси x с массовой скоростью u(x) слева направо, при этом $u(-\infty) = u_0, \ u(+\infty) = u_1 \ (u_0 = D, \ u_1 = D - U,$ где D, U— абсолютные значения скорости распространения ударной волны и массовой скорости за ее фронтом в системе координат, в которой волна распространяется по покоящемуся в начальном состоянии веществу). Величина u(x) и другие параметры претерпевают существенные изменения вблизи фронта ударной волны, расположенного при $x \approx 0$.

Термодинамические и кинематические параметры в начальном (индекс 0), перед фронтом ударной волны, и в конечном (1), за ее фронтом, состояниях связаны законами сохранения массы, импульса и энергии:

$$\rho_0 u_0 = \rho_1 u_1, \tag{10}$$

$$p_0 + \rho_0 u_0^2 = p_1 + \rho_1 u_1^2, \tag{11}$$



Рис. 1. Схема течения вещества в ударной волне

$$E_0 + p_0/\rho_0 + u_0^2/2 = E_1 + p_1/\rho_1 + u_1^2/2.$$
 (12)

При заданном модельном УРС (термическом — $p=p(T,\rho)$ и калорическом — $E=E(p,\rho)$) из уравнений (10)–(12) могут быть найдены (при фиксированных начальных значениях $\rho_0,\ p_0,\ E_0$) термодинамические $E_1(\rho_1),\ p_1(\rho_1),\ p_1(T_1),\ \rho_1(T_1)$ и кинематические $u_0(\rho_1),\ u_1(\rho_1),\ u_0(u_1),\ D(U)$ зависимости, отвечающие УРС (для уравнения в виде $(1),\ (2),\ (7)$ также определяются связи $E_1(p_{rep,1}),\ p_1(p_{rep,1}),\ T_1(p_{rep,1}),\ u_0(p_{rep,1}),\ u_1(p_{rep,1})$).

Уравнения НС в одномерном случае имеют

вид

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} = 0, \tag{13}$$

$$\frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho u^2)}{\partial x} = -\frac{\partial p_{xx}}{\partial x},\tag{14}$$

$$\frac{\partial(\rho(E+u^2/2))}{\partial t} + \frac{\partial(\rho u(E+u^2/2))}{\partial x} =$$

$$= -\frac{\partial (up_{xx} + q)}{\partial x}, \quad (15)$$

где t — время,

$$p_{xx} = p - \mu \frac{\partial u}{\partial x},\tag{16}$$

$$\mu = 4/3\eta + \nu,\tag{17}$$

 p_{xx} — компонент тензора напряжений вдоль оси x, ν — коэффициент объемной вязкости,

$$q = -\chi \frac{\partial T}{\partial x},\tag{18}$$

q — поток тепла.

В случае стационарной ударной волны уравнения (13)–(15) удовлетворяются при выполнении соотношений

$$\rho(x)u(x) = \rho_0 u_0, \tag{19}$$

$$p_{xx} + \rho(x)u^2(x) = p_0 + \rho_0 u_0^2, \tag{20}$$

$$\left[E(x) + \frac{p_{xx}(x)}{\rho(x)} + \frac{u^2(x)}{2}\right]\rho(x)u(x) +$$

$$+q(x) = \left[E_0 + \frac{p_0}{\rho_0} + \frac{u_0^2}{2}\right] \rho_0 u_0. \tag{21}$$

Использование в (20), (21) выражений (16), (18) с учетом основанного на (19) соотношения

$$\frac{du(x)}{dx} = -\frac{\rho_0 u_0}{\rho^2(x)} \frac{d\rho(x)}{dx}$$

приводит к следующим дифференциальным уравнениям, определяющим профиль волны:

$$\frac{d\rho(x)}{dx} = \frac{\rho_0 u_0}{\mu(x)} \left\{ \frac{\rho^2(x)}{\rho_0^2 u_0^2} \left[p_0 - p(x) \right] + \frac{\rho^2(x)}{\rho_0} - \rho(x) \right\},
\frac{dT(x)}{dx} = \frac{\rho_0 u_0}{\chi(x)} \left\{ E(x) - E_0 + p_0 \left[\frac{1}{\rho(x)} - \frac{1}{\rho_0} \right] + \frac{u_0^2}{2} \left[\frac{2\rho_0}{\rho(x)} - \frac{\rho_0^2}{\rho^2(x)} - 1 \right] \right\}.$$
(23)

Здесь

$$p(x) = p(T(x), \rho(x)), \quad E(x) = E(T(x), \rho(x)),$$

$$\mu(x) = \mu(T(x), \rho(x)), \quad \chi(x) = \chi(T(x), \rho(x)).$$

Если при решении системы уравнений (22), (23) в качестве начальных условий принять значения $\rho = \rho_1$, $T = T_1$ (они определяются с привлечением УРС из уравнений (10)–(12)), возникает трудность, связанная с тем, что в этом случае правые части данных уравнений обращаются в нуль (поскольку в состоянии 1 выполняются уравнения (10)–(12)). Эту трудность можно обойти следующим способом. Из (22), (23) следует

$$\frac{d\rho}{dT}(x) = \frac{\chi(x)}{\mu(x)} \left\{ \frac{[p_0 - p(x)]\rho^2(x)}{\rho_0^2 u_0^2} + \frac{\rho^2(x)}{\rho_0} - \rho(x) \right\} / \left\{ E(x) - E_0 + \frac{\rho^2(x)}{\rho_0} - \frac{1}{\rho_0} \right\} + \frac{u_0^2}{2} \left[\frac{2\rho_0}{\rho(x)} - \frac{\rho_0^2}{\rho^2(x)} - 1 \right] \right\}.$$

От состояния 1 осуществляется небольшое (на малые величины $\Delta \rho$ и ΔT , удовлетворяющие уравнению (24)) отступление в состояние 1', в котором

$$p = p_1 + \left(\frac{\partial p}{\partial \rho}\right)_{T,1} \Delta \rho + \left(\frac{\partial p}{\partial T}\right)_{\rho,1} \Delta T, \quad (25)$$

$$E = E_1 + \left(\frac{\partial E}{\partial \rho}\right)_{T,1} \Delta \rho + \left(\frac{\partial E}{\partial T}\right)_{\rho,1} \Delta T. \tag{26}$$

На основе (6) производную $\left(\frac{\partial E}{\partial \rho}\right)_{T,1}$ можно записать в виде

$$\left(\frac{\partial E}{\partial \rho}\right)_{T,1} = -\frac{T_1}{\rho_1^2} \left(\frac{\partial p}{\partial T}\right)_{\rho,1} + \frac{p_1}{\rho_1^2}.$$
 (27)

Подстановка (25)–(27) с учетом (11), (12) в (24) после некоторых преобразований приводит к следующему квадратному уравнению:

$$\left(\frac{\Delta\rho}{\Delta T}\right)_{1}^{2} \left[\frac{p_{1}-p_{0}}{\rho_{1}^{2}} - \frac{T_{1}}{\rho_{1}^{2}} \left(\frac{\partial p}{\partial T}\right)_{\rho,1} + \frac{u_{0}^{2}\rho_{0}}{\rho_{1}^{2}} \left(\frac{\rho_{0}}{\rho_{1}} - 1\right)\right] + \left(\frac{\Delta\rho}{\Delta T}\right)_{1} \left\{\left(\frac{\partial E}{\partial T}\right)_{\rho,1} - \frac{\chi_{1}}{\mu_{1}} \left[\frac{2\rho_{1}(p_{0}-p_{1})}{\rho_{0}^{2}u_{0}^{2}} - \frac{\rho_{1}^{2}}{\rho_{0}^{2}u_{0}^{2}} \left(\frac{\partial p}{\partial \rho}\right)_{T,1} + \frac{2\rho_{1}}{\rho_{0}} - 1\right]\right\} + \frac{\chi_{1}}{\mu_{1}} \frac{\rho_{1}^{2}}{\rho_{0}^{2}u_{0}^{2}} \left(\frac{\partial p}{\partial T}\right)_{\rho,1} = 0. \quad (28)$$

В результате его решения (при выборе одного из двух решений перед корнем квадратным берется знак плюс) определяется величина $\left(\frac{\Delta\rho}{\Delta T}\right)_1$, удовлетворяющая уравнению (24) (а следовательно, и уравнениям (22), (23)). По ней может быть найдена разность $\Delta\rho$ в состояниях 1 и 1' при какой-либо наперед заданной малой разности ΔT между этими состояниями (или, наоборот, по малой заданной разнице $\Delta\rho$ определяется значение ΔT). После реализации данной процедуры состояние 1' можно принять в качестве начального при решении системы уравнений (22), (23) (правые части этих уравнений в состоянии 1' не равны нулю и уравнения могут быть решены численно на ЭВМ).

Как отмечалось выше, наиболее простыми переменными модели, определяемой выражениями (1), (2), (7)–(9), являются величины T, p_{rep} . Поэтому при расчете профиля ударной волны удобнее решать не систему уравнений (22), (23) (ее решение требует привлечения итерационных процедур для определения входящих в уравнения функций $p(T(x), \rho(x))$,

 $E(T(x), \rho(x)), \mu(T(x), \rho(x)), \chi(T(x), \rho(x))),$ а эквивалентную ей, записанную для переменных величин $T(x), p_{rep}(x)$ (поскольку по ним функции $\rho(T(x), p_{rep}(x)), \ p(T(x), p_{rep}(x)), \ E(T(x), p_{rep}(x)), \mu(T(x), p_{rep}(x)), \ \chi(T(x), p_{rep}(x))$ рассчитываются аналитически). Эта система уравнений, при переходе к которой от (22), (23) используется уравнение (2) (в виде $V=V_c(p_{rep})+RT/p_{rep})$, имеет следующий вид:

$$V_c(p_{rep}) + RT/p_{rep}$$
), имеет следующий вид:
$$\frac{dx}{dp_{rep}}(x) = -\left[\frac{dV_c}{dp_{rep}}(x) - \frac{RT(x)}{(p_{rep}(x))^2}\right] /$$

$$/ \left[\frac{1}{(\rho(x))^2} \frac{d\rho(x)}{dx} + \frac{R}{p_{rep}(x)} \frac{dT(x)}{dx}\right], \quad (29)$$

$$\frac{dT}{dp_{rep}}(x) = \frac{\rho_0 u_0}{\chi(x)} \left\{ E(x) - E_0 + p_0 \left[\frac{1}{\rho(x)} - \frac{1}{\rho_0}\right] + \right.$$

$$+ \frac{u_0^2}{2} \left[\frac{2\rho_0}{\rho(x)} - \frac{\rho_0^2}{\rho^2(x)} - 1\right] \left\} \frac{dx}{dp_{rep}}(x), \quad (30)$$
 где $\rho(x) = \frac{1}{V_c[p_{rep}(x)] + RT(x)/p_{rep}(x)}, \quad \text{член}$
$$\frac{dx}{dp_{rep}}(x) \text{ в (30) есть правая часть (29), про-изводные } \frac{d\rho(x)}{dx}, \quad \frac{dT(x)}{dx} \text{ определяются выражениями (22), (23) (в которые входят функции, выраженные через переменные $T(x), p_{rep}(x)$).$$

состояния 1 в состояние 1'. Величины Δp_{rep} и ΔT в этих состояниях связаны соотношением $\left(\frac{\Delta T}{\Delta p_{rep}}\right)_1 = -\left[\left(\frac{dV_c}{dp_{rep}}\right)_1 - \frac{RT_1}{(p_{rep},1)^2}\right] / \left[\frac{1}{\rho_1^2}\left(\frac{\Delta \rho}{\Delta T}\right)_1 + \frac{R}{p_{rep},1}\right], \tag{31}$

При решении данной системы уравнений, так

же как и при решении (22), (23), производится малое (на величины Δp_{rep} , ΔT) отступление из

где $\left(\frac{\Delta\rho}{\Delta T}\right)_1$ определяется из уравнения (28). При конкретной реализации описанной процедуры при отступлении из состояния 1 в состояние 1' в уравнении (31) полагалось $\Delta p_{rep} \sim (10^{-3} \div 10^{-4}) p_{rep,1}$. Принималось, что в состоянии 1' x=0. Решение системы (29), (30) проводится от значения $p_{rep,1}$, соответствующего

состоянию 1', до значения $p_{rep,0}$, отвечающего состоянию 0 ($p_{rep,0}$ находится при определении начального состояния в (10)–(12)). Решение осуществлялось методом Эйлера с постоянным шагом $\Delta p_{rep} \sim 10^{-4} (p_{rep,1'} - p_{rep,0})$ (дальнейшее дробление не приводит к значимому изменению искомых профилей $\rho(x)$, p(x), T(x) и др.). Следует отметить, что конечные значения ρ , p, T, определяемые в процессе численного решения уравнений (29), (30) и отвечающие конечному значению $p_{rep} = p_{rep,0}$, хорошо соответствуют (как и должно быть) их исходным значениям перед фронтом (0) ударной волны (см. далее, например, рис. 2–4).

РЕЗУЛЬТАТЫ РАСЧЕТА ДЛЯ АРГОНА

В уравнения (29)–(31) кроме модельных характеристик, определяемых выражениями (1), (2), (7)–(9), входит коэффициент объемной вязкости ν (через уравнение (17)). Для одноатомного идеального газа $\nu=0$. В жидком состоянии ориентировочное значение $\nu\sim\eta$. Основанные на потенциале $\varphi_{\rm LJ}(r)$ значения ν (функция ν приведена в [2]) в несколько разменьше значений η в области состояний, реализуемых при ударном сжатии жидкого аргона $(p\approx1\div40~\Gamma\Pi{\rm a})$, и сравнительно мало влияют на толщину ударных волн. С учетом этого, а также ожидаемой точности определения η на основе (8) с погрешностью, равной ≈ 2 , далее используется предположение, что $\nu=0$.

При расчете профилей ударных волн в жидком аргоне с применением модели мВдВ полагалось

$$p_{rep}(V_c) = A\left(\frac{V_c}{V_{00}}\right)^{-5},\tag{32}$$

$$p_{att}(V) = -A \left(\frac{V}{V_{00}}\right)^{-3},$$
 (33)

где $A={
m const},\ V_{00}=1/\rho_{00}={
m const}.$ Тогда выражение (5) имеет вид

$$p_{\rm x}(V) = A \left[\left(\frac{V}{V_{00}} \right)^{-5} - \left(\frac{V}{V_{00}} \right)^{-3} \right].$$

Данная зависимость аналогична зависимости $p_{\rm x}(V)$ для случая, когда поведение жидкости моделируется с помощью потенциала $\varphi_{\rm LJ}(r)$ ($p_{\rm x}(V) \sim \frac{d\varphi_{\rm LJ}(V)}{dV},~V \sim r_m^3,~r_m$ — среднее расстояние между ближайшими атомами).

Параметры A, ρ_{00} в (32), (33) выбирали

из условия соответствия (приближенного) расчетов на основе модели (1), (2), (7) начальным (индекс 0) и конечным (индекс 1) параметрам жидкого аргона, реализуемым при МДмоделировании [1, 2]. В [1] структура ударных волн рассчитана при $\rho_0=1.11~\mathrm{г/cm}^3,\ T_0=131~\mathrm{K}$ (им соответствует $p_0=0.0147~\mathrm{ГПa}$) и двух значениях интенсивности ударной волны: $U=0.6~\mathrm{km/c},\ D=2.0~\mathrm{km/c}$ и $U=1.0~\mathrm{km/c},\ D=2.6~\mathrm{km/c}$. В [2] моделировалась ситуация с начальными данными $\rho_0=1.42~\mathrm{г/cm}^3,\ T_0=86.5~\mathrm{K}$ ($p_0\approx0$) при $U=3.54~\mathrm{km/c},\ D=7.66~\mathrm{km/c}$.

Приняты следующие значения параметров настоящей модели: $A = 0.6337 \ \Gamma\Pi a, \ \rho_{00} =$ 1.347 г/см³. Они обеспечивают точное описание начальных условий [1] и приближенное воспроизведение (при $\rho_0 = 1.42 \text{ г/см}^3$, $T_0 = 86.5 \text{ K}$ расчетное значение $p_0 = 0.2 \ \Gamma \Pi a$) начальных условий [2]. С принятыми значениями параметров A, ρ_{00} хорошо воспроизводятся характеристики ударного сжатия из [1] при U =1.0 км/с (расчетное значение D = 2.59 км/с) и из [2] при U = 3.54 км/с (расчетное значение D = 7.59 км/c). Несколько хуже воспроизводится результат [1] при U = 0.6 км/с (расчетное значение D = 1.865 км/c). При этом, однако, следует отметить замеченное в [3] некоторое рассогласование значений U = 0.6 км/c, D = 2.0 км/c с приводимыми в [1] профилями ударной волны (по этой причине при сопоставлении НС-профилей с МД-профилями в [3] вместо D = 2.0 км/с использовалось значение D =1.8 km/c).

На рис. 2-4 показаны результаты расчетов методом МД [1] профилей относительной плотности (степени сжатия), давления и температуры при U=0.6 и 1.0 км/с, а также соответствующие профили, полученные при решении уравнений НС в [3] и на основе рассматриваемого подхода. (Расчетные зависимости [1–3] и настоящей работы на рис. 2-7 изображены с некоторым смещением относительно друг друга.)

На рис. 5–7 приведены аналогичные результаты НС- и МД-расчетов [2] при U=3.54 км/с (вместо профиля p(x) на рис. 6 изображены распределения $p_{xx}(x)$ и $p_{yy}(x)$; $p_{xx}(x)$ определяется по формуле (16), $p_{yy}(x)=p(x)+\left[\frac{2}{3}\eta(x)-\nu(x)\right]\frac{du(x)}{dx}$ — компонент тензора напряжений в направлении y рис. 1).

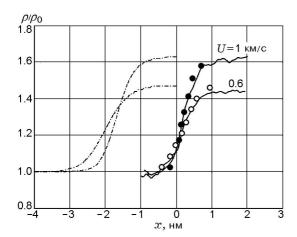


Рис. 2. Расчетные зависимости степени сжатия от координаты x во фронте ударных волн в жидком аргоне при U=0.6 и 1.0 км/с:

сплошные линии — МД-расчеты [1], кружки — HC-расчеты [3], штрихпунктирные линии — HC-расчеты настоящей работы

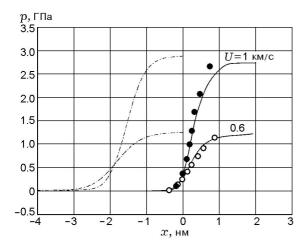


Рис. 3. Расчетные зависимости давления от координаты x во фронте ударных волн в жидком аргоне при U=0.6 и 1.0 км/с:

сплошные линии — МД-расчеты [1], кружки — HC-расчеты [3], штрихпунктирные линии — HC-расчеты настоящей работы

Как видно из рис. 2–7, расчетные профили ударных волн, полученные на основе настоящего подхода, в диапазоне $p\approx 1\div 40$ ГПа качественно и, в целом, количественно близки к МД- и НС-профилям, при расчетах которых используется потенциал $\varphi_{\rm LJ}(r)$.

Для оценки влияния вязкости и теплопроводности на толщину ударных волн в жидком аргоне были выполнены расчеты с измененными значениями η и χ по сравнению с их определением в (8), (9) (константы A, ρ_{00} в (32), (33)

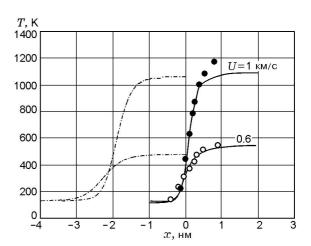


Рис. 4. Расчетные зависимости температуры от координаты x во фронте ударных волн в жидком аргоне при U=0.6 и 1.0 км/с:

сплошные линии — МД-расчеты [1], кружки — HC-расчеты [3], штрихпунктирные линии — HC-расчеты настоящей работы

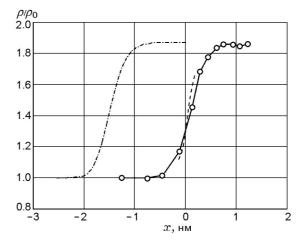


Рис. 5. Расчетные зависимости степени сжатия от координаты x во фронте ударной волны в жидком аргоне при $U=3.54~{\rm km/c}$:

кружки — МД-расчет [2], штриховая линия — HC-расчет [2], штрихпунктирная — HC-расчет настоящей работы

не изменялись). На рис. 8 изображены профили давления при U=1.0 км/с для пяти случаев: $1-\eta$, χ определяются выражениями (8), (9) (основной вариант, изображенный на рис. 3); $2-\eta$ увеличено в три раза по сравнению со значением, полученным по (8), χ определяется соотношением (9); $3-\eta$ уменьшено в три раза по сравнению с (8), χ определяется (9); $4-\eta$ находится по формуле (8), χ увеличено в три раза по сравнению с (9); $5-\eta$ определяется (8), χ уменьшено в три раза по сравнению с (9).

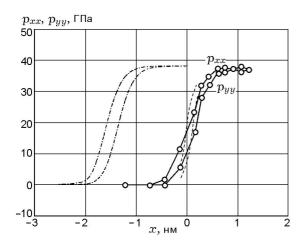


Рис. 6. Расчетные зависимости напряжений p_{xx} и p_{yy} от координаты x во фронте ударной волны в жидком аргоне при U=3.54 км/с: кружки — МД-расчет [2], штриховые линии — НС-расчеты [2], штрихпунктирные —

НС-расчеты настоящей работы

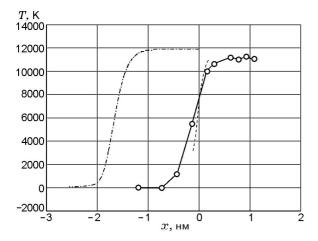


Рис. 7. Расчетные зависимости температуры от координаты x во фронте ударной волны в жидком аргоне при $U=3.54~{\rm km/c}$:

кружки — МД-расчет [2], штриховая линия — HC-расчет [2], штрихпунктирная — HC-расчет настоящей работы

Видно, что в вариантах 2, 4 толщина ударной волны примерно в два-три раза больше, чем в основном варианте 1, а в вариантах 3, 5 — приблизительно в два-три раза меньше. Профиль давления и других величин более чувствителен к изменению η , чем χ (это отмечалось в [3]).

ЗАКЛЮЧЕНИЕ

В работе описан способ расчета структуры стационарных ударных волн в атомарных

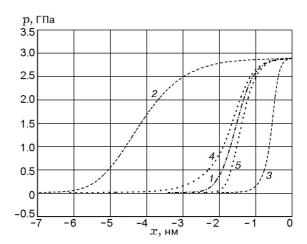


Рис. 8. Расчетные зависимости давления от координаты x во фронте ударной волны в жидком аргоне по настоящей модели при $U=1.0\,$ км/с для вариантов $1-5\,$ (обозначения вариантов см. в тексте)

жидкостях, основанный на решении уравнений Навье — Стокса с применением модифицированной модели Ван-дер-Ваальса. Показано, что полученные на его основе зависимости структуры волн в жидком аргоне при $p \approx 1 \div 40 \ \Gamma \Pi a$ удовлетворительно согласуются (при близости параметров начального состояния жидкости и ее ударной адиабаты в рассматриваемых подходах) с аналогичными зависимостями, полученными методом молекулярной динамики с применением потенциала $\varphi_{\mathrm{LJ}}(r)$, и с зависимостями, основанными на решении уравнений Навье — Стокса с применением уравнения состояния и кинетических коэффициентов, основанных на данном потенциале. Можно полагать, что настоящий подход применим и для других простых жидкостей с той же приблизительно, как и для аргона, точностью. Его положительным качеством является простота выражений для уравнения состояния и коэффициентов переноса, модельные параметры которых могут быть относительно легко откалиброваны по доступным экспериментальным данным, в частности по ударной сжимаемости жидкого вещества.

ЛИТЕРАТУРА

1. **Клименко В. Ю., Дремин А. Н.** Структура фронта ударной волны в жидкости // Детонация. Критические явления. Физико-химические превращения в ударных волнах. — Черноголовка, 1978. — С. 79–84.

- 2. Holian B. L., Hoover W. G., Morgan B., Straub G. K. Shock-wave structure via molecular dynamics and Navier Stokes continuum mechanics // Phys. Rev. A. 1980. V. 22, N 6. P. 2798–2808.
- 3. **Hoover W. G.** Structure of a shock-wave front in a liquid // Phys. Rev. Lett. 1979. V. 42, N 23. P. 1531–1534.
- 4. **Медведев А. Б.** Модель уравнения состояния с учетом испарения, ионизации и плавления // Вопросы атомной науки и техники. Сер. Теорет. и прикл. физика. 1992. Вып. 1. С. 23–29.
- 5. Медведев А. Б. Модификация модели Вандер-Ваальса для плотных состояний // Ударные волны и экстремальные состояния вещества / под ред. В. Е. Фортова, Л. В. Альтшулера, Р. Ф. Трунина, А. И. Фунтикова. М.: Наука, 2000. С. 315–341.

- 6. **Медведев А. Б.** Коэффициенты переноса в модифицированной модели Ван-дер-Ваальса // Теплофизика высоких температур. 1995. Т. 33, № 2. С. 227–235.
- 7. Копышев В. П., Медведев А. Б., Хрусталев В. В. Модельная оценка вязкости продуктов взрыва конденсированных взрывчатых веществ // Физика горения и взрыва. — 2004. — Т. 40, № 2. — С. 84–93.
- 8. Медведев А. Б. Уравнение состояния и коэффициенты переноса аргона на основе модифицированной модели Ван-дер-Ваальса до давлений 100 ГПа // Физика горения и взрыва. 2010. Т. 46, № 4. С. 116–126.
- 9. Гиршфельдер Дж., Кертис Ч., Берд Р. Молекулярная теория газов и жидкостей. М.: Изд-во иностр. лит., 1961.

Поступила в редакцию 20/IV 2011 г.