УДК 519.7

ВЛИЯНИЕ ПРОПУСКОВ ДАННЫХ НА АППРОКСИМАЦИОННЫЕ СВОЙСТВА НЕПАРАМЕТРИЧЕСКОЙ ОЦЕНКИ ДВУМЕРНОЙ ПЛОТНОСТИ ВЕРОЯТНОСТИ НЕЗАВИСИМЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

А. В. Лапко^{1, 2}, В. А. Лапко^{1, 2}

¹Институт вычислительного моделирования СО РАН, 660036, г. Красноярск, Академгородок, 50, стр. 44
²Сибирский государственный аэрокосмический университет им. академика М. Ф. Решетнева, 660014, г. Красноярск, просп. им. Газеты «Красноярский рабочий», 31 E-mail: lapko@icm.krasn.ru

Исследуются асимптотические свойства непараметрической оценки двумерной плотности вероятности независимых случайных величин. На этой основе определяется зависимость её эффективности от пропусков данных в исходной статистической информации.

Ключевые слова: плотность вероятности, непараметрическая оценка, асимптотические свойства, независимые случайные величины, пропуски данных.

Введение. Имеется выборка $V=(x_1^i,x_2^i,i=\overline{1,n})$, состоящая из n статистически независимых наблюдений двумерной случайной величины $x=(x_1,x_2)$ с априори неизвестной плотностью вероятности p(x). Переменные x_1,x_2 являются независимыми.

В данных условиях определим эмпирическую плотность вероятности как функцию от выборочных значений случайных величин x_1, x_2 в виде

$$\bar{p}(x) = \bar{p}_1(x_1)\bar{p}_2(x_2),$$
 (1)

где

$$\bar{p}_v(x_v) = \frac{1}{nc_v} \sum_{i=1}^n \Phi\left(\frac{x_v - x_v^i}{c_v}\right), \quad v = 1, 2.$$
 (2)

В статистике (2) ядерные функции $\Phi(u_v)$ обладают следующими свойствами [1]:

$$\Phi(u_v) = \Phi(-u_v), \quad 0 \le \Phi(u_v) < \infty,$$

$$\int \Phi(u_v)du_v = 1, \quad \int u_v^2 \Phi(u_v)du_v = 1.$$

Параметры ядерных функций $c_v = c_v(n)$ убывают с ростом n. Здесь и далее бесконечные пределы интегрирования опускаются.

Непараметрическая оценка плотности вероятности в форме (1) рассмотрена в работе [2] и обобщена на многомерный случай в [3]. На этой основе исследованы свойства непараметрической оценки уравнения разделяющей поверхности при решении двуальтернативной задачи распознавания образов [4].

Выполнение условий независимости признаков позволяет естественным образом обойти проблему заполнения пропусков данных при их наличии в исходной выборке

$$\bar{V} = (x_1^i, i \in I_1 \subset I, x_2^i, i \in I_2 \subset I).$$

Здесь $I=(i=\overline{1,n});\ I_1$ и I_2 — множества номеров точек выборки V, в которых отсутствуют пропуски значений случайных величин x_1 и x_2 . Обозначим через n_1 и n_2 количество элементов множеств $I_1,\ I_2$.

Тогда непараметрическая оценка плотности вероятности (1) в условиях наличия выборки \bar{V} перепишется в виде

$$\tilde{p}(x) = \tilde{p}_1(x_1)\tilde{p}_2(x_2),\tag{3}$$

где

$$\tilde{p}_v(x_v) = \frac{1}{n_v c_v} \sum_{i \in I_v} \Phi\left(\frac{x_v - x_v^i}{c_v}\right), \quad v = 1, 2.$$

$$\tag{4}$$

Цель данной работы состоит в исследовании зависимости аппроксимационных свойств непараметрической оценки плотности вероятности (3) от условий пропусков данных в исходной статистической информации. Предполагается, что истинная плотность вероятности разлагается в ряд Тейлора по всем своим аргументам в каждой точке x.

Асимптотические свойства непараметрической оценки плотности вероятности $\tilde{p}(x)$. При анализе асимптотических свойств статистики (3) будем использовать технологию преобразований, предложенную в работе [5] и развитую в [6–12].

По определению имеем

$$M(\tilde{p}(x)) = \frac{1}{n_1 n_2 c_1 c_2} \sum_{i \in I_1} \sum_{j \in I_2} M\left(\Phi\left(\frac{x_1 - x_1^i}{c_1}\right) \Phi\left(\frac{x_2 - x_2^j}{c_2}\right)\right) =$$

$$= \frac{1}{n_1 n_2 c_1 c_2} \sum_{i \in I_1} \sum_{j \in I_2} \iint \Phi\left(\frac{x_1 - x_1^i}{c_1}\right) \Phi\left(\frac{x_2 - x_2^j}{c_2}\right) p_1(x_1^i) p_2(x_2^j) dx_1^i dx_2^j =$$

$$= \frac{1}{c_1 c_2} \int \Phi\left(\frac{x_1 - t}{c_1}\right) p_1(t) dt \int \Phi\left(\frac{x_2 - \tau}{c_2}\right) p_2(\tau) d\tau,$$

где M — знак математического ожидания.

При выполнении преобразований учитывается, что элементы выборок $(x_1^i, i \in I_1), (x_2^j, j \in I_2)$ являются значениями случайных величин t и τ с плотностями вероятности $p_1(t), p_2(\tau).$

Произведём замену переменных $x_1-t=u_1c_1,\ x_2-\tau=u_2c_2$ и, разлагая функции $p_v(x_v-u_vc_v),\ v=1,2,$ в ряды Тейлора в точке $(x_1,x_2),$ с учётом свойств ядерных функций при достаточно больших n_1 и n_2 получим

$$M(\tilde{p}(x)) \sim p_1(x_1)p_2(x_2) + \frac{c_2^2}{2}p_2^{(2)}(x_2)p_1(x_1) + \frac{c_1^2}{2}p_1^{(2)}(x_1)p_2(x_2) + \frac{c_1^2c_2^2}{4}p_1^{(2)}(x_1)p_2^{(2)}(x_2), \quad (5)$$

где $p_v^{(2)}(x_v)$ — вторая производная плотности вероятности $p_v(x_v)$ по $x_v, v = 1, 2$. Вычислим среднеквадратическую ошибку аппроксимации $\tilde{p}(x)$:

$$M \iint (p_1(x_1)p_2(x_2) - \tilde{p}_1(x_1)\tilde{p}_2(x_2))^2 dx_1 dx_2 = ||p_1(x_1)||^2 ||p_2(x_2)||^2 - ||p_1(x_1)p_2(x_2)||^2 + ||p_1(x_1)p_2(x_2)||^2 +$$

$$-2M\left(\int p_1(x_1)\tilde{p}_1(x_1)dx_1\int p_2(x_2)\tilde{p}_2(x_2)dx_2\right)+M(\|\tilde{p}_1(x_1)\|^2\|\tilde{p}_2(x_2)\|^2),\tag{6}$$

где $||p_v(x_v)||^2 = \int p_v^2(x_v) dx_v, \ v = 1, 2.$

Найдём асимптотические выражения слагаемых среднеквадратического отклонения (6). Вычислим

$$M \int \tilde{p}_1^2(x_1) dx_1 = \frac{1}{n_1^2 c_1^2} \int \left[\sum_{i \in I_1} \int \Phi^2 \left(\frac{x_1 - x_1^i}{c_1} \right) p_1(x_1^i) dx_1^i + \right]$$

$$+ \sum_{i \in I_1} \sum_{\substack{j \in I_1 \\ j \neq i}} \int \Phi\left(\frac{x_1 - x_1^i}{c_1}\right) p_1(x_1^i) dx_1^i \int \Phi\left(\frac{x_1 - x_1^j}{c_1}\right) p_1(x_1^j) dx_1^j dx_1 =$$

$$= \frac{1}{n_1^2 c_1^2} \int \left[n_1 \int \Phi^2 \left(\frac{x_1 - t}{c_1} \right) p_1(t) dt + n_1 (n_1 - 1) \left(\int \Phi \left(\frac{x_1 - t}{c_1} \right) p_1(t) dt \right)^2 \right] dx_1.$$

Далее, производя замену переменных, будем иметь

+
$$n_1(n_1-1)c_1^2 \left(\int \Phi(u_1)p_1(x_1-c_1u_1)du_1\right)^2 dx_1.$$

Разложим функцию $p_1(x_1-u_1c_1)$ в ряд Тейлора в точке x_1 и, пренебрегая величинами малости $0(c_1/n_1)$, $0(c_1^6)$, получим асимптотическое выражение

$$M \int \tilde{p}_1^2(x_1) dx_1 \sim \frac{\|\Phi(u)\|^2}{n_1 c_1} + \int \left(p_1(x_1) + \frac{c_1^2 p_1^{(2)}(x_1)}{2}\right)^2 dx_1, \tag{7}$$

где $\|\Phi(u)\|^2 = \int \Phi^2(u) du$.

Выполняя аналогичные преобразования, имеем

$$M \int \tilde{p}_2^2(x_2) dx_2 \sim \frac{\|\Phi(u)\|^2}{n_2 c_2} + \int \left(p_2(x_2) + \frac{c_2^2 p_2^{(2)}(x_2)}{2}\right)^2 dx_2. \tag{8}$$

С учётом (7), (8), пренебрегая слагаемыми малости $0(c_1^4c_2^4)$, $0(c_1^4c_2^2)$, $0(c_1^2/(n_2c_2))$, $0(c_2^4/(n_1c_1))$ и выше, нетрудно вычислить третье слагаемое выражения (6):

$$M\left(\int \tilde{p}_{1}^{2}(x_{1})dx_{1}\int \tilde{p}_{2}^{2}(x_{2})dx_{2}\right) \sim \|p_{1}(x_{1})\|^{2}\|p_{2}(x_{2})\|^{2} + \frac{(\|\Phi(u)\|^{2})^{2}}{n_{1}n_{2}c_{1}c_{2}} + \frac{\|\Phi(u)\|^{2}\|p_{2}(x_{2})\|^{2}}{n_{1}c_{1}} + \frac{\|\Phi(u)\|^{2}\|$$

$$+\frac{\|\Phi(u)\|^2\|p_1(x_1)\|^2}{n_2c_2}+\frac{c_2^4}{4}\|p_2^{(2)}(x_2)\|^2\|p_1(x_1)\|^2+\frac{c_1^4}{4}\|p_1^{(2)}(x_1)\|^2\|p_2(x_2)\|^2+$$

$$+ c_1^2 \|p_2(x_2)\|^2 \int p_1(x_1) p_1^{(2)}(x_1) dx_1 + c_2^2 \|p_1(x_1)\|^2 \int p_2(x_2) p_2^{(2)}(x_2) dx_2 +$$

$$+ c_1^2 c_2^2 \int p_1(x_1) p_1^{(2)}(x_1) dx_1 \int p_2(x_2) p_2^{(2)}(x_2) dx_2.$$

$$(9)$$

Рассмотрим одну из составляющих второго слагаемого выражения (6):

$$M\left(\int p_{1}(x_{1})\tilde{p}_{1}(x_{1})dx_{1}\right) = \frac{1}{c_{1}}\int p_{1}(x_{1})\left(\int \Phi\left(\frac{x_{1}-t}{c_{1}}\right)p_{1}(t)dt\right)dx_{1} =$$

$$= \int p_{1}(x_{1})\left(\int \Phi(u)p_{1}(x_{1}-c_{1}u)du\right)dx_{1},$$

которое при $n_1 \to \infty$ соответствует

$$||p_1(x_1)||^2 + \frac{c_1^2}{2} \int p_1(x_1)p_1^{(2)}(x_1)dx_1.$$

Тогда асимптотическое выражение второго слагаемого

$$-2M\left(\int p_1(x_1)\tilde{p}_1(x_1)dx_1\int p_2(x_2)\tilde{p}_2(x_2)dx_2\right)$$

в среднеквадратическом отклонении (6) примет вид

$$-2\|p_1(x_1)\|^2\|p_2(x_2)\|^2 - c_2^2\|p_1(x_1)\|^2 \int p_2(x_2)p_2^{(2)}(x_2)dx_2 - c_1^2\|p_2(x_2)\|^2 \int p_1(x_1)p_1^{(2)}(x_1)dx_1 - c_2^2\|p_2(x_2)\|^2 \int p_2(x_2)p_2^{(2)}(x_2)dx_2 - c_1^2\|p_2(x_2)\|^2 \int p_2(x_2)p_2^{(2)}(x_2)dx_2 - c_2^2\|p_2(x_2)\|^2 \int p_2(x_2)dx_2 - c_2^2\|p_2(x_2)\|p_2(x_2)\|p_2(x_2)\|^2 + c_2^2\|p_2(x_2)\|p_2(x_2$$

$$-\frac{c_1^2 c_2^2}{2} \int p_1(x_1) p_1^{(2)}(x_1) dx_1 \int p_2(x_2) p_2^{(2)}(x_2) dx_2.$$
 (10)

Подставляя результаты вычислений (9) и (10) в (6), окончательно получим

$$M \iint (p_1(x_1)p_2(x_2) - \tilde{p}_1(x_1)\tilde{p}_2(x_2))^2 dx_1 dx_2 \sim \frac{(\|\Phi(u)\|^2)^2}{n_1 n_2 c_1 c_2} + \frac{\|\Phi(u)\|^2 \|p_2(x_2)\|^2}{n_1 c_1} + \frac{\|\Phi(u)\|^2}{n_1 c_1} + \frac{\|\Phi(u)\|$$

$$+\frac{\|\Phi(u)\|^2\|p_1(x_1)\|^2}{n_2c_2} + \iint \left(\frac{p_2(x_2)p_1^{(2)}(x_1)c_1^2}{2} + \frac{p_1(x_1)p_2^{(2)}(x_2)c_2^2}{2}\right)^2 dx_1 dx_2. \tag{11}$$

Из анализа выражения (11) следует, что при выполнении условий $c_1 \to 0$, $c_2 \to 0$, $n_1c_1 \to \infty$ и $n_2c_2 \to \infty$ в условиях $n_1 \to \infty$, $n_2 \to \infty$ статистика $\tilde{p}(x)$ (3) обладает свойством сходимости в среднеквадратическом, а с учётом её асимптотической несмещённости (5) является состоятельной.

Анализ свойств статистики $\tilde{p}(x)$. Исследуем значимость влияния пропусков в исходных данных на аппроксимационные свойства непараметрической оценки плотности вероятности независимых случайных величин. Для этого проведём анализ отношения $R = \tilde{W}/\bar{W}$ минимальных значений среднеквадратических отклонений \bar{W} , \tilde{W} непараметрических статистик $\bar{p}(x)$ (1) и $\tilde{p}(x)$ (3).

Вычислим выражение (11) при оптимальных значениях коэффициентов размытости ядерных функций

$$\bar{c}_v = \left[\frac{\|\Phi(u)\|^2}{n_v \|p_v^{(2)}(x_v)\|^2}\right]^{1/5}, \quad v = 1, 2,$$

непараметрических оценок $\tilde{p}_1(x_1)$ и $\tilde{p}_2(x_2)$ плотностей вероятности $p_1(x_1), p_2(x_2)$.

Для упрощения преобразований будем считать, что $n_v = \alpha_v n$, $0 < \alpha_v \le 1$, v = 1, 2. В этих условиях, подставляя значения \bar{c}_v , v = 1, 2, в выражение (11), получим

$$\tilde{W} = \left(\frac{\|\Phi(u)\|^2}{n}\right)^{4/5} \left[\left(\frac{\|\Phi(u)\|^2}{\alpha_1 \alpha_2 n}\right)^{4/5} (\|p_1^{(2)}(x_1)\|^2 \|p_2^{(2)}(x_2)\|^2)^{1/5} + \right]$$

$$+\frac{5}{4} \left(\left(\frac{\|p_1^{(2)}(x_1)\|^2}{\alpha_1^4} \right)^{1/5} \|p_2(x_2)\|^2 + \left(\frac{\|p_2^{(2)}(x_2)\|^2}{\alpha_2^4} \right)^{1/5} \|p_1(x_1)\|^2 \right) +$$

$$+\frac{1}{2}(\alpha_1\alpha_2||p_1^{(2)}(x_1)||^2||p_2^{(2)}(x_2)||^2)^{-2/5}\prod_{v=1}^2\int p_v(x_v)p_v^{(2)}(x_v)dx_v\Big].$$
 (12)

В соответствии с результатами исследований [2] минимальное среднеквадратическое отклонение \bar{W} для непараметрической оценки плотности вероятности $\bar{p}(x)$ (1) определяется выражением (12) при $\alpha_v=1,\,v=1,2.$

Пусть восстанавливаемая плотность вероятности $p(x) = p_1(x_1)p_2(x_2)$ по выборке V формируется на основе нормальных законов распределения

$$p_v(x_v) = 1/(2\pi)^{1/2} \exp(-x_v^2/2), \quad v = 1, 2,$$

для которых

$$||p_v(x_v)||^2 = \frac{1}{2\sqrt{\pi}}, \quad ||p_v^{(2)}(x_v)||^2 = \frac{3}{8\sqrt{\pi}}, \quad \int p_v(x_v)p_v^{(2)}(x_v)dx_v = -\frac{1+2\sqrt{\pi}}{4\pi}.$$

В качестве ядерной функции $\Phi(u)$ используем оптимальное ядро Епанечникова [5]:

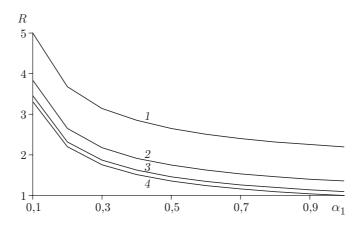
$$\Phi(u) = \begin{cases} 3/(4\sqrt{5})(1 - u^2/5) & \forall |u| < \sqrt{5}, \\ 0 & \forall |u| \ge \sqrt{5}. \end{cases}$$

Ему соответствует значение $\|\Phi(u)\|^2 = 3/(5\sqrt{5})$.

Для данных условий минимальное значение среднеквадратического отклонения (12) статистики $\tilde{p}(x)$ (3) запишется в виде

$$\tilde{W} = \left(\frac{3}{5\sqrt{5}n}\right)^{4/5} \left[\left(\frac{1}{\alpha_1 \alpha_2 n}\right)^{4/5} \frac{3}{10} \left(\frac{3}{10\pi}\right)^{1/5} + \frac{5}{8\sqrt{\pi}} \left(\frac{3}{8\sqrt{\pi}}\right)^{1/5} (\alpha_1^{-4/5} + \alpha_2^{-4/5}) + \frac{1}{2\sqrt{\pi}} \left(\frac{3}{8\sqrt{\pi}}\right)^{1/5} (\alpha_1^{-4/5} + \alpha_2^{-4/5}) \right] + \frac{1}{2\sqrt{\pi}} \left[\left(\frac{3}{2\sqrt{\pi}}\right)^{4/5} \left(\frac{3}{2\sqrt{\pi}}\right)^{4/5} \left(\frac{3}{2\sqrt{\pi}}\right)^{4/5} \left(\frac{3}{2\sqrt{\pi}}\right)^{4/5} \right] + \frac{1}{2\sqrt{\pi}} \left(\frac{3}{2\sqrt{\pi}}\right)^{4/5} \left(\frac{3}{2\sqrt{\pi}}$$

$$+\frac{(1+2\sqrt{\pi})^2}{4\pi(81(2\pi)^3)^{1/5}}(\alpha_1\alpha_2)^{-2/5}\Big].$$
 (13)



Зависимость отношения R минимальных значений среднеквадратических отклонений статистик (3), (1) от параметров α_1 , α_2 , определяющих объём выборок, используемых при синтезе оценок плотностей вероятности (4). Кривые 1–4 соответствуют значениям $\alpha_2 = 0.2$; 0,5; 0,8; 1

Причём минимальное значение среднеквадратического отклонения \bar{W} для статистики (1) определяется выражением (13), если положить $\alpha_1 = \alpha_2 = 1$.

Существует интервал значений $\alpha_1 \in (0,4;0,5)$, в котором устанавливается практически постоянный темп снижения отношения R (см. рисунок). Отметим, что R характеризует аппроксимационные свойства непараметрической оценки плотности вероятности (3) по сравнению со статистикой (1). Левее указанного интервала уменьшение значений параметра α_1 приводит к значительному увеличению отношения R, что объясняется снижением объёма $n_1 = \alpha_1 n$ статистических данных при синтезе оценки плотности вероятности $\tilde{p}_1(x_1)$ (4) и, соответственно, ростом значений среднеквадратического отклонения (12). Отмеченная тенденция особенно проявляется при уменьшении значений α_2 . Например, при $\alpha_1 = 0,1$ и $\alpha_2 = 0,2$ значение среднеквадратического отклонения \tilde{W} в 5 раз превышает значение W для непараметрической оценки $\tilde{p}(x)$ (1), восстанавливаемой по выборке без пропусков данных. Представленная закономерность свойственна и зависимостям отношения R от α_2 , что наблюдается при анализе приведённого рисунка.

При небольшом количестве пропусков значений случайной величины x_2 ($\alpha_2 \in (1;0,8)$) зависимости R от α_1 являются очень близкими. Например, при $\alpha_1=0,8,\ \alpha_2=1$ значения $R=1,1,\$ а для условия $\alpha_1=0,8,\ \alpha_2=0,8$ отношение R=1,2.

Объём выборки оказывает несущественное влияние на зависимость отношения R от параметров α_1 , α_2 , что объясняется относительно малыми значениями первого слагаемого

$$\left(\frac{\|\Phi(u)\|^2}{\alpha_1 \alpha_2 n}\right)^{4/5} (\|p_1^{(2)}(x_1)\|^2 \|p_2^{(2)}(x_2)\|^2)^{1/5} \tag{14}$$

в квадратных скобках выражения (12) по сравнению с его другими составляющими. Причём с ростом n значение (14) уменьшается. Поэтому при изменении n значения отношения R отличаются лишь в третьем либо четвёртом знаке после запятой.

Для использования полученных результатов при оценивании плотности вероятности в условиях пропуска данных зависимость отношения R от параметров α_1 , α_2 представлена в табличном виде (см. таблицу).

α_1	α_2									
	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
0,1	6,52	5,02	4,42	4,08	3,85	3,69	3,57	3,47	3,39	3,36
0,2	5,02	3,68	3,15	2,85	2,65	2,51	2,41	2,32	2,25	2,2
0,3	$4,\!42$	3,15	2,65	2,37	2,18	2,05	1,95	1,87	1,81	1,76
0,4	4,08	2,85	2,37	2,1	1,92	1,79	1,7	1,63	1,56	1,51
0,5	3,85	2,65	2,18	1,92	1,75	1,63	1,54	1,46	1,41	1,36
0,6	3,69	2,51	2,05	1,79	1,63	1,51	1,42	1,35	1,29	$1,\!25$
0,7	3,57	2,41	1,95	1,7	1,54	1,42	1,33	1,26	1,21	1,16
0,8	3,47	2,32	1,87	1,63	1,46	1,35	1,26	1,2	1,14	1,1
0,9	3,39	2,25	1,81	1,56	1,41	1,29	1,21	1,14	1,09	1,04
1	3,33	2,2	1,76	1,51	1,36	1,25	1,16	1,1	1,04	1

Заключение. При оценивании плотности вероятности независимых случайных величин имеется возможность обхода проблемы заполнения пропусков в исходных статистических данных. Её непараметрическая оценка определяется произведением ядерных оценок плотности вероятности одномерных случайных величин типа Розенблатта — Парзена, каждая из которых формируется по имеющимся исходным данным. В условиях достаточно больших объёмов статистической информации рассматриваемая непараметрическая оценка плотности вероятности обладает свойствами асимптотической несмещённости и состоятельности. Отношение R минимальных значений среднеквадратических отклонений статистик $\tilde{p}(x)$, $\bar{p}(x)$ является количественной мерой влияния пропусков данных на аппроксимационные свойства непараметрических оценок плотности вероятности независимых случайных величин. Объём выборки оказывает несущественное влияние на зависимость отношения R от условий пропуска данных. При относительно малом количестве пропусков данных ($\alpha_1 \geq 0.8$, $\alpha_2 \geq 0.8$) значения $R \leq 1.2$.

Полученные результаты являются основой для их обобщения на многомерный случай и синтеза эффективных непараметрических алгоритмов обработки информации.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Parzen E.** On estimation of a probability density function and mode // Ann. Math. Stat. 1962. **33**, N 3. P. 1065–1076.
- 2. **Лапко А. В., Лапко В. А.** Непараметрическая оценка плотности вероятности независимых случайных величин // Информатика и системы управления. 2011. **29**, № 3. С. 118–124.
- 3. **Лапко А. В., Лапко В. А.** Влияние априорной информации о независимости многомерных случайных величин на свойства их непараметрической оценки плотности вероятности // Системы управления и информационные технологии. 2012. **48**, № 2.1. С. 164–167.
- 4. **Лапко А. В., Лапко В. А.** Свойства непараметрической решающей функции при наличии априорных сведений о независимости признаков классифицируемых объектов // Автометрия. 2012. **48**, № 4. С. 112–119.
- 5. **Епанечников В. А.** Непараметрическая оценка многомерной плотности вероятности // Теория вероятностей и ее применения. 1969. **14**, № 1. С. 156–161.
- 6. **Лапко А. В.**, **Лапко В. А.** Свойства непараметрической оценки плотности вероятности многомерных случайных величин в условиях больших выборок // Информатика и системы управления. 2012. **32**, № 2. С. 121–126.

- 7. **Лапко А. В.**, **Лапко В. А.** Анализ дисперсии среднеквадратической ошибки аппроксимации непараметрической оценки плотности вероятности ядерного типа // Информатика и системы управления. 2012. **33**, № 3. С. 132–139.
- 8. **Лапко А. В.**, **Лапко В. А.** Разработка и исследование двухуровневых непараметрических систем классификации // Автометрия. 2010. **46**, № 1. С. 70–78.
- 9. **Лапко А. В., Лапко В. А.** Анализ асимптотических свойств непараметрической оценки уравнения разделяющей поверхности в двуальтернативной задаче распознавания образов // Автометрия. 2010. **46**, № 3. С. 48–53.
- 10. Lapko A. V., Lapko V. A. Nonparametric pattern recognition systems in the conditions of large learning samples // Pattern Recogn. and Image Analysis. 2010. 20, N 2. P. 129–136.
- 11. **Лапко А. В.**, **Лапко В. А.** Синтез структуры семейства непараметрических решающих функций в задаче распознавания образов // Автометрия. 2011. **47**, № 4. С. 76–82.
- 12. **Лапко А. В., Лапко В. А.** Анализ непараметрических алгоритмов распознавания образов в условиях пропуска данных // Автометрия. 2008. **44**, № 3. С. 65–74.

Поступила в редакцию 6 марта 2013 г.