УДК 533.6.011

ВЛИЯНИЕ ПОГРАНИЧНОГО СЛОЯ НА ДОННОЕ ДАВЛЕНИЕ В ДВУМЕРНОМ ТЕЧЕНИИ ПРИ ЧИСЛЕ МАХА M=5

М. Г. Кталхерман, В. М. Мальков*

Институт теоретической и прикладной механики СО РАН, 630090 Новосибирск * Балтийский государственный технический университет им. Д. Ф. Устинова (Военмех), 190005 Санкт-Петербург E-mail: magri@ngs.ru

Получены новые данные о величине донного давления в двумерном течении при числе Маха M = 5 в широком диапазоне изменения относительной толщины пограничного слоя в сечении отрыва потока. Результаты экспериментов сопоставлены с теорией Таннера, на основе чего сделан вывод о необходимости корректировки данной расчетной модели.

Ключевые слова: сверхзвуковое течение, турбулентный пограничный слой, донное давление.

Введение. Относительное давление p_b/p_e в донной области тела, обтекаемого потоком сжимаемого газа, оказывает существенное влияние на структуру ближнего следа. Проблеме ближнего следа и, в частности, донного сопротивления посвящено большое число экспериментальных и теоретических работ. Обширная библиография по данному вопросу приведена в обзоре [1] и монографиях [2–4]. В многочисленных экспериментах и с помощью простых расчетных моделей исследована зависимость донного давления тел различной конфигурации от основных определяющих параметров, которую обычно представляют в виде $p_b/p_e = f(M_e, \alpha, \delta/(t/2))$ либо $\delta^{**}/(t/2)$, где M_e — число Маха набегающего потока; δ — толщина пограничного слоя; δ^{**} — толщина потери импульса; t/2 — полувысота (радиус) донного среза; α — угол отклонения контура тела от направления набегающего потока в сечении отрыва. Наиболее подробно изучен диапазон $M_e \leq 3$, $\delta/(t/2) \leq 1$, и для такого сочетания параметров имеющихся в литературе данных достаточно, чтобы определить донное сопротивление тел простой геометрии (конус, конус-цилиндр, клин, уступ).

Между тем в области больших сверхзвуковых скоростей ($M_e > 3$) измерения проводились либо при фиксированном соотношении $\delta/(t/2)$, либо диапазон изменения относительной толщины пограничного слоя на донном срезе варьировался в узких пределах соответствующих значений ($\delta^{**}/(t/2) \leq 1$). Последнее, в частности, не позволяет определить, насколько точно существующие расчетные модели учитывают влияние этого параметра на донное давление. Отметим, что большие значения $\delta/(t/2)$ реализуются в ряде практических ситуаций, например при обтекании торца удлиненных тел или при малых числах Рейнольдса.

Из сказанного выше следует, что исследования влияния пограничного слоя на донное сопротивление тел актуальны и в настоящее время. Именно этой проблеме посвящена данная работа, в которой проведены подробные измерения донного давления на торце плоского тела, обтекаемого сверхзвуковым потоком при числе Маха M = 5, в широком диапазоне изменения толщины пограничного слоя на срезе, вплоть до значения $\delta/(t/2) = 3,2$. Полученные экспериментальные данные использованы для тестирования расчетной модели

Рис. 1. Экспериментальная сборка (а) и сопловой блок (б)

Таннера [5–7], которая в отличие от других известных методов расчета (см., например, [1–4]) претендует на возможность предсказания донного сопротивления тел различной геометрии при любых значениях М и $\delta/(t/2)$ и ранее апробирована при меньших числах Маха.

Установка, модели и методика измерений. Донное давление измерялось на торцевом срезе сопловой лопатки в ходе обширных исследований структуры потока, формируемого блоком плоских сверхзвуковых сопел [8] (применительно к проблеме оптического качества активной среды газодинамического лазера [9, 10]). Условия экспериментов и геометрия моделей оказались подходящими для проведения исследований при существенной вариации относительной толщины пограничного слоя в сечении отрыва потока.

Эксперименты проводились в аэродинамической трубе сечением рабочей части 51 × 56 мм. Основные элементы установки — форкамера с выравнивающей сеткой, канал постоянного сечения и эжектор. Фотография сборки форкамеры с установленным блоком сопловых лопаток и подсоединенной секцией рабочей части приведена на рис. 1,*a*. При проведении зондовых измерений вместо оптических стекол устанавливались вставки из оргстекла с отверстиями для насадков, перемещавшихся с помощью координатного устройства, снабженного микрометром.

Установка продувалась очищенным воздухом из баллонов высокого давления. Давление в форкамере в ходе выполнения экспериментов составляло $p_0 = 0.75 \div 3.75$ МПа. Число Маха в сечении торцевого среза лопаток было близко к расчетному значению M = 5. В большинстве экспериментов поступающий в форкамеру воздух нагревался в омическом подогревателе до температуры $T_0 = (340 \pm 3)$ K, обеспечивающей отсутствие конденсации.

Экспериментальные модели представляли собой блоки плоских профилированных сверхзвуковых сопел (рис. 1, δ), размещенных на входе в рабочую часть. Было изготовлено несколько вариантов сопловых лопаток с одинаковым контуром, различавшихся только толщиной выходной кромки t. Контур сверхзвуковой части сопла с угловой точкой рассчитывался методом характеристик на число Маха M = 5 в выходном сечении и затем подправлялся на толщину вытеснения пограничного слоя на стенке. В результате при высоте критического сечения $h^* = 0,49$ мм высота сечения на выходе составила H = 13,45 мм, протяженность сверхзвуковой части L = 37 мм, контур лопатки на срезе параллелен оси.

Для проведения опытов были препарированы центральные лопатки двух блоков (толщины выходных кромок препарированных лопаток t = 0.70 и 2.3 мм соответственно). В торцах этих лопаток сверлились дренажные отверстия диаметром 0.3 мм, которые с помощью сверлений под углом 90° подсоединялись к импульсным магистралям.

Рис. 2. Шлирен-фотография потока за сопловым блоком

В ходе экспериментов измерялись параметры торможения (p_0, T_0) и давление на торце сопловой лопатки (донное давление p_b). Распределение параметров потока в сечении сопла, находящемся на расстоянии 2 мм от выхода, определялось по результатам измерений насадками полного и статического давления. Давление в потоке на срезе сопла (p_e) находилось по измеренному в этом сечении статическому давлению с учетом небольшого расширения сопла. Трубка Пито была изготовлена со сплющенной приемной частью размерами 0.3×1 мм. Диаметр насадка статического давления (с носком оживальной формы) равен 1 мм. Давление регистрировалось датчиками ИКД 27 ДФ (номиналы 0,016, 0,06 и 0,1 атм, точность измерения этими датчиками 3 %).

По результатам измерений в пограничном слое вблизи среза сопла вычислялась толщина потери импульса δ^{**} . Вариация параметра $\delta^{**}/(t/2)$ достигалась за счет изменения чисел Рейнольдса на срезе сопла ($\operatorname{Re}_L = (1 \div 5) \cdot 10^6$) и толщины кромки (t = 0,75 и 2,3 мм). Тем самым в экспериментах была исследована область значений $\delta^{**}/(t/2) = 0,028 \div 0,127$. При этом отношение толщины пограничного слоя к полувысоте торца варьировалось в пределах $\delta/(t/2) = 0,7 \div 3,2$, т. е. условия опытов соответствуют случаю толстого пограничного слоя.

Результаты экспериментов и их анализ. Шлирен-фотография потока при обтекании торца плоской сопловой лопатки толщиной t = 2,3 мм показана на рис. 2. Подобная структура течения обсуждалась в литературе и не требует особых пояснений. Обращает на себя внимание лишь скачок уплотнения, идущий из угловой точки и расположенный ниже веера волн разрежения. Очевидно, это так называемый краевой скачок уплотнения, подробно исследованный в работе [11]. После отражения от оси донной области он сливается с хвостовым скачком.

Поскольку основной задачей данной работы было исследование влияния пограничного слоя на донное давление, большое внимание уделялось определению толщины потери импульса.

На рис. 3 показаны профили чисел Маха и статического давления в потоке вблизи торцевого среза (координата y = 0 соответствует оси канала). Распределение скоростей по толщине пограничного слоя соответствует степенному закону с показателем степени 1/7.

На рис. 4 представлены зависимости донного давления p_b/p_e от относительной толщины потери импульса $\delta^{**}/(t/2)$ вблизи отрыва потока. Отметим, что использование в качестве обобщающего параметра величины $\delta^{**}/(t/2)$ в настоящее время является общепринятым, хотя и недостаточно обосновано. Две группы точек на рис. 4 соответствуют опытам с различной толщиной кромки. Характер полученной в настоящей работе зави-

Рис. 3. Распределение параметров потока вблизи среза сопла при $\text{Re}_L = 1,9 \cdot 10^6$: 1 — M(y); 2 — P(y); точки — эксперимент; линии — расчет

Рис. 4. Зависимость донного давления от толщины потери импульса пограничного слоя:

точки — эксперимент; сплошная линия — аппроксимация опытных данных с экстраполяцией экспериментальной зависимости на нулевую толщину пограничного слоя; штрихпунктирная линия — расчет методом Таннера при $H^*/H = 7,37$; штриховая линия — то же при $H^*/H = 4$; вертикальные отрезки соответствуют максимальной погрешности величины p_b/p_e

симости донного давления от толщины пограничного слоя находится в соответствии с результатами предшествующих исследований, выполненных при меньших числах Маха, однако наблюдается более сильное влияние пограничного слоя на величину p_b/p_e .

Чтобы показать это, сопоставим полученные в эксперименте значения p_b/p_e с соответствующими значениями при исчезающе малой толщине пограничного слоя. Известные теоретические модели предсказывают заметно различающиеся значения p_b/p_e при $\delta/t \to 0$. Так, согласно приведенным в монографии [5] результатам расчетов зависимости $p_b/p_e = f(\delta/t)$ (экстраполированные в сторону бо́лыших чисел Маха), $p_{b,0}/p_e \approx 0.03 \div 0.09$ при $\delta/t \to 0$ и M = 5. Предельные значения этого диапазона отмечены на рис. 4 штрихами на вертикальной оси. Принимая среднее значение $p_{b,0}/p_e = 0.06$ при $\delta/t \to 0$ и M = 5 и сравнивая его с максимальным, получим, что в условиях настоящих экспериментов $p_{b,\max}/p_{b,0} \approx 8$. В то же время согласно приведенным в [3] результатам экспериментов при M = 1,5 и 3 в диапазоне $\delta/(t/2) = 0.05 \div 1.0$ значения p_b/p_e увеличиваются в 1,2 и 2 раза соответственно.

Далее рассмотрим, насколько результаты наших измерений согласуются с расчетами по теории Таннера [6]. Выбор именно этой модели для сравнения с экспериментом был обусловлен ее универсальностью. В [6] Таннером с единых позиций получены соотношения для определения коэффициента сопротивления осесимметричных и плоских тел различной геометрии при до-, транс- и сверхзвуковых скоростях потока с учетом влияния пограничного слоя. Судя по данным, приведенным в [6], результаты расчетов достаточно хорошо описывают полученные в экспериментах зависимости коэффициента сопротивления от числа Маха и толщины пограничного слоя. Однако модель тестировалась в основном по результатам экспериментов в диапазоне чисел Маха $M \leq 3$. Правда, в [7] выполнено сопоставление расчета с опытными данными для ряда плоских конфигураций при $M = 3 \div 7$, но при одном значении относительной толцины потери импульса $\delta^{**}/(t/2) = 0.045$. Опыты проводились в ударной трубе, и толщина пограничного слоя на срезе не измерялась, а находилась расчетным путем по формулам для несжимаемой жидкости, что вносит некоторую неопределенность в интерпретацию результатов измерений. В свою очередь, данные настоящей работы позволяют провести тестирование модели Таннера при таком сочетании определяющих параметров (M = 5, широкий диапазон толщин потери импульса), при котором ее возможности предсказания величины донного давления ранее не анализировались.

В теории Таннера используется известное соотношение Осватича [12], устанавливающее связь между изменением энтропии потока и сопротивлением тела, а также ряд введенных автором допущений. Основное из них — равенство донного давления при обтекании тела вязким и невязким потоками. Анализируя обтекание ступеньки, расположенной по потоку (случай, практически соответствующий условиям настоящей работы), Таннер постулирует распределение скорости в слое смешения в сечении сразу за точкой присоединения потока и полагает постоянным давление в области отрыва. Течение вне слоя смешения считается изоэнтропическим. Угол наклона к поверхности замыкающего (хвостового) скачка уплотнения в обоих случаях (вязкое и невязкое течение) полагается одинаковым.

Далее анализируется изменение потока энтропии за точкой присоединения для рассматриваемых случаев. Приравнивая эти потоки, можно определить единственное значение донного давления. При этом в соотношение для потока энтропии в невязком потоке входит параметр H^* — "эффективное" расстояние от стенки (оси симметрии) до точки, в которой сливаются слабые (изоэнтропические) волны сжатия над слоем смешения, переходя в хвостовой скачок уплотнения, а в соотношения для вязкого потока — толщина слоя смешения H в рассматриваемом сечении. В результирующую формулу обе величины входят в виде отношения H^*/H . Значение параметра $H^*/H = 7,37$ определялось из сопоставления теории с экспериментом при M = 1,73 и тонком пограничном слое. Далее, чтобы учесть влияние пограничного слоя, к сопротивлению тела добавлялось сопротивление трения обтекаемого тела, характеризуемое толщиной потери импульса в точке отрыва.

Из изложенного выше следует, что теория Таннера не является достаточно строгой (впрочем, как и все предшествующие) и область ее применения можно определить на основе детального сравнения с экспериментом.

Результаты расчета по модели Таннера для условий настоящих экспериментов показаны на рис. 4. Ход расчетной кривой качественно совпадает с полученной в опытах зависимостью. При этом в случае большой толщины пограничного слоя наблюдается и достаточно хорошее количественное соответствие (различие в пределах 10 % при $\delta^{**}/(t/2) \ge 0,1$). С уменьшением параметра $\delta^{**}/(t/2)$ расчетная кривая все больше отдаляется от экспериментальных точек. Так, при $\delta^{**}/(t/2) = 0,03$ теоретическое значение донного давления на 25 % выше экспериментального, различие еще больше при $\delta^{**}/(t/2) \to 0$.

Нами были проведены расчеты по модели Таннера с варьированием параметра H^*/H . В этой связи отметим, что из теории не следует постоянство параметра H^*/H при различных значениях M. На это обстоятельство было обращено внимание автора модели в работе [13], однако в [7] Таннер отметил, что экспериментальные данные, использованные в [13] для сравнения с теорией, недостаточно точны. Тем не менее, как видно из рис. 4, расчеты по модели Таннера с параметром $H^*/H = 4$ лучше согласуются с экспериментом при M = 5, чем при использовании значения $H^*/H = 7,37$, рекомендованного автором и основанного на сравнении с данными опытов при M < 3. Отсюда следует необходимость уточнения в рассматриваемой модели зависимости параметра H^*/H от числа Маха путем сопоставления результатов расчета с наиболее надежными экспериментальными данными.

ЛИТЕРАТУРА

- Murthy S. N. B., Osborn J. R. Base flow phenomena with and without injection: experimental results, theories, and bibliography // Progress in Astronaut. and Aeronaut. V. 40: Aerodynamics of Base Combustion. Washington: AIAA, Inc., 1976.
- 2. Швец А. И., Швец И. Т. Газодинамика ближнего следа. Киев: Наук. думка, 1976.
- 3. Гогиш Л. В., Степанов Г. Ю. Турбулентные отрывные течения. М.: Наука, 1979.
- 4. Гогиш Л. В., Степанов Г. Ю. Отрывные и кавитационные течения. М.: Наука, 1990.
- Tanner M. Boundary layer thickness and base pressure // AIAA J. 1985. V. 23, N 12. P. 1985–1989.
- 6. Tanner M. Steady base flows // Progress of Aerospace Sciences. 1989. V. 21, N 2. P. 81–157.
- Tanner M. Base pressure in supersonic flow, further thoughts about a theory // AIAA J. 1991. V. 30, N 2. P. 565–566.
- 8. **Кталхерман М. Г.** Газодинамика проточной части газодинамических и химических лазеров: Дис. ... докт. техн. наук. Новосибирск, 1998.
- Кталхерман М. Г., Мальков В. М. Аэрооптика сопловых блоков газодинамических лазеров // ПМТФ. 1993. № 6. С. 20–28.
- Malkov V. M., Ktalkherman M. G. Some aspects of aerodynamics of GDL nozzle banks // AIAA Paper, 94-2447, 1994.
- 11. Hama F. R. Experimental studied on the lip-shock // AIAA J. 1968. V. 23, N 2.
- 12. Oswatisch K. Grundkagen des Gasdynamic. N. Y.: Springer-Verlag, 1976.
- Magi E. C., Gay S. L. Supersonic base pressure and lip-shock // AIAA J. 1987. V. 26, N 3. P. 370–372.

Поступила в редакцию 21/VI 2004 г., в окончательном варианте — 7/X 2004 г.