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INTRODUCTION

The Cluster Site Approximation (CSA) model
was used to model fcc phases in several sys-
tems [1�3], this model is based on two approxi-
mations: Bragg�Williams [4, 5], and physically
sounder Cluster Variation Method (CVM) [6, 7].
Since the clusters in the CSA are non-interfer-
ing (see Fig. 1, b), the independent variables
are the site probabilities, thus retaining the
advantage of the Bragg�Williams approxima-
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tion, i.e., the computation simplicity. And it
can take into account both long and short
range order, thus retaining the ability of
CVM method [8]. This makes the CSA ideal
for multicomponent phase diagram calcula-
tions [9].

The configurational entropy in the cluster-
site approximation was derived for the fcc phases
by Yang and Li [10, 11]; but the application of
this method to the calculation of the bcc phase
equilibria has never appeared in the literature.
Then in the present study, formulations of the
CSA for bcc structure were performed, based
on the non-interfering irregular tetrahedron clus-
ter in the CVM method.

Fe�Al is the most important binary system
for both Al and Fe alloys, because it shows ex-
cellent corrosion and sulphidation resistance
even at high temperature, reduced density com-
pared to other ferrous alloys. Additional engi-
neering advantages are low raw material and
processing cost, all these advantages make the
alloys of this system interesting engineering
materials [14]. The set of phases used in the
present work is formed by the A2�Al, A2�Fe,
DO3�Fe3Al, DO3�FeAl3, B2�FeAl and B32�FeAl
compounds.

Fig. 1. Interfering (a) and non-interfering (b) irregular
tetrahedrons in the bcc structure.
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The basis set is kept limited here on pur-
pose since only a simplified thermodynamic de-
scription of  the bcc system based on the irreg-
ular tetrahedron approximation of the cluster
site method is targeted.

The binary phase diagram Fe�Al was pre-
viously investigated experimentally [15], and
theoretically using the combination between
First Principle Calculations (FPC) and statisti-
cal model CVM [16]. With these new data of
the FPC, the present work aims to investigate
the ability of the CSA to describe the order-
disorder transition in the bcc phases and show
how the cluster-site approximation can be com-
bined successfully with the First Principle Cal-
culations.

CONVENTIONAL CVM

The cluster variation method  is based on the
concept of a basic cluster defined as a set of
lattice points, chosen in such a way that it
contains the maximum correlation length to be
considered [17, 18]. In the present instance the
irregular tetrahedron (IT) is considered to
describe the superstructure of the cubic-
centered structures [19]. It is the simplest tree
dimensional cluster to take  into account the
first αγ, αδ, βγ and βδ and the second αβ, γβ
nearest pair interactions in the bcc lattice (see
Fig. 1, a).

Defining the basic cluster we may write the
corresponding thermodynamic functions. Firstly
the internal energy for any bcc phase can be
described as:
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where ω(1) and ω(2) presents respectively the
nearest and next nearest-neighbour pair
interactions.

The derivation of the CVM entropy formula
was thoroughly outlined in several reviews [20]
and shall not be discussed here. In the bcc lattice,
the configurational entropy is written as:
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where ix , 1
iky , 2

ijy , zijk and ijkl
αβγδρ are the cluster

probabilities of finding the atomic configurations
specified by the subscript at a point,  nearest-
neighbor pair, second nearest-neighbor pair, at
a triangle and at a tetrahedron cluster,
respectively. N presents the number of lattice
points.

To obtain the phase equilibrium conditions in
this method, the grand potential function is used:
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where xi  is the mole fraction of component i, λ
is the Lagrange multiplier to the constraint

ijkl
ijkl

ρ∑ = 1, and µ* called the effective chemical

potential is defined as  * ( � )/2A A Bµ = µ µ  where

µi is the absolute chemical potential of element i.
The equilibrium values of the grand potential

Ω and corresponding configurations of clusters
are obtained by minimizing this function with

respect to ijkl
αβγδρ :
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MODIFIED CVM

In spite of its successes, a major disadvan-
tage of the CVM is the large number of inde-
pendent variables in the free energy functional
when it is applied to multicomponent solutions
[8]; i.e., if an alloy contains N components, the



CALCULATION OF  BCC  PHASE DIAGRAM USING THE CLUSTER-SITE APPROXIMATION AND FIRST PRINCIPLE CALCULATIONS 135

number of independent variables is Nn, where
n is the number of atoms in the cluster chosen.
But in the CSA method it is in the order of
N × n, because the independent variables are

the site probabilities , , , ,q
ix q = α β γ δ , instead of

the cluster probabilities ijkl
αβγδρ  in the CVM ap-

proximation.
The basic idea of the CSA method is to de-

fine the CVM free energy with non-interfering
clusters: they are permitted only to share cor-
ners; therefore sub-cluster energies do not en-
ter into the energy equation, i.e. as a correction
term. This method was used to calculate differ-
ent fcc-based phase diagrams with great suc-
cess [1�3, 9], but not for the bcc-based alloys.

In this paper we focus our attention on the
bcc alloys, and since the CSA is based on the
cluster variation method, the main objective is
to define the free energy of the system with
non-interfering clusters, i.e., the so-called mod-
ified CVM (see Fig. 1, b). Using the generaliza-
tion proposed by C. Colinet [21],  the internal
energy for a system of N site is:
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where γ is the number of non-interfering
clusters per site, and the tetrahedron energies
will be rewriten as:
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non-interfering  clusters always result in two
term for the entropy, as:
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Of course, this method decreases the com-
putational time,  because we can see in Eq. (8)
that the number of dependent variables de-
creases, i.e. the pair and triangle probabilities

(1) (2),ij ijy y  and tijk do not appear in the entropy

term,  but the number of independent param-
eters is still Nn. However, it gives a good start-
ing point for generalized cluster site approxi-
mation to all alloy structures.

CLUSTER-SITE APPROXIMATION

The cluster-site approximation is an adap-
tation of the generalized quasi-chemical meth-
od, introduced many years ago by Fowler for
treating atom-molecule equilibria in gases, and
used for clusters in solid solutions by Yang and
Li [10, 11].

  The free energy in the CSA approximation
takes the same form as that in the modified
CVM in the above section,  internal energy (E)
is given by Eq. (6) and Eq. (7) and the configu-
rational entropy (Sconf) by Eq. (8). Therefore we
can rewrite the molar free energy as:
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here ϕ is the cluster partition function related
to the cluster energies ωijkl mentioned above by:
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In Eqs. (9) and (10) the q
ix  values are the sub-

lattice species concentrations, and the i
AP  val-

ues, are new parameters related to the species
chemical potentials. Since they are related to

the q
ix  values, only one of them is required as

independent variables.
The first step in the search for equilibrium

between two phases is to minimize the grand
potential (Ω), with respect to the site probabil-
ities under the constraints of constant temper-
ature, and effective chemical potential (µ*). The

minimization process was performed by the
Natural Iterative (NI) algorithm, developed by
Kikuchi [22], and the equilibrium parameters

q
iP  values in each sub-lattice q = α,β,γ,δ can be

done as:
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if the site is occupied by the species B (i = B),
these parameters are equal to unity, i.e.

B 1, , , ,qP q= = α β γ δ (12)
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and the cluster probabilities can be calculated
explicitly as follows:

exp(� / )i j k l
ijkl ijkl

P P P P
P RT

α β γ δ

= ω
ϕ (13)

The number of independent variables de-
creases to four instead of 16 in the tetrahe-
dron-CVM approximation, that makes the CSA
very promising for the multicomponent phase
diagram calculations.

Among various techniques of the first prin-
ciple investigation,  it is recognized that the com-
bination of  the electronic structure total ener-
gy calculation with statistical mechanics calcu-
lations by the CVM [23�26] provides a reliable
tool.

In the present study, we adopted FP-LAPW
electronic structure calculations to obtain the
total energies of a set of selected ordered com-
pound. These data are plugged into the CSA in
order to obtain phase boundaries in a bcc alloys
system.

RESULTS FOR THE Fe�Al SYSTEM

Table 1 shows  the total energies of the six
compounds forming the basis for the cluster-
site approximation applied to the Fe�Al sys-
tem, and Table 2 presents the formation ener-
gies of the bcc compounds, as well as the cor-
responding equilibrium lattice constant. The
analysis of  the formation energies shows that
the most stable bcc-based compound in this basis
set is B2.

In the Fe�Al system there are different
structural phases, since the objective of this
study was to explore the application of the CSA

to the bcc structure, only the bcc phases were
modeled. Thus the phases that will be studied
in this paper are two disordered phases (A2),
and four ordered phases with DO3, B32 and B2

superstructure.
Figure 2 shows the formation energies as a

function of composition for all the compounds
of  this binary system,  calculated from the FP-
LAPW results [16]. From this Figure we can
expect by plotting the ground state line the
appearance of the B2�FeAl and the DO3�Fe3Al
superstructure in the phase diagram at low tem-
perature, and the B32�FeAl end DO3�FeAl3 will
always be metastable and will not appear in
the equilibrium phase diagram.

The Fe�Al phase diagram shown in Fig. 3 is
calculated using the cluster site approximation,
and it illustrates the ability of the present mod-
eling to describe the bcc phases.

The CSA in conjugation with First principle
calculations is capable of fitting the order-dis-
order equilibrium, the phase diagram calculat-

TABLE 1

Fe�Al cohesive energies of the bcc phases

obtained by FP-LAPW [16]

Alloy  Space group Structure E, eV/at.

Fe 3Im m A2 �6.696

Fe3Al 3Fm m DO3 �6.127

FeAl 3Fd m B32 �5.353

FeAl 3Pm m B2 �5.474

FeAl3 3Fm m DO3 �4.378

Al 3Im m A2 �3.477

TABLE 2

The formation energies and equilibrium  lattice
parameters of the various phases in the Fe�Al system

Alloy Ef, J/mol a, Å

Fe                0 2.801

Fe3Al (DO3) �21273.23 2.914

FeAl (B32) �24911.12 2.933

FeAl (B2) �36282.55 2.910

FeAl3 (DO3) �9275.42 3.042

Al             0 3.257

Fig. 2. Formation energies as a function of composition
for all the compounds studied.
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ed indicates that the B2�FeAl phase is stable
over an extended composition range up to the
order-disorder transition temperature of 2650 K
and the DO3�Fe3Al compound, by contrast is
found to be stable up to 950 K, where it un-
dergoes a peritectoid reaction to B2 + A2; these
results indicated that the previous predictions
of the phases that will be appearing in the
phase diagram from the formation energies are
correct.

The transition temperature obtained exper-
imentally is 1583 K [15]. Hence, the present re-
sults of 2650 K are overestimated by 1067 K.
The overestimation originates from the reason
that our calculations are based on a rigid lattice
model, which neglects important contributions
to the alloy free energy,  like the vibrational term.

Kikuchi and Jindo [27] demonstrated that the
temperature scale of  prototype phase diagrams
can be reduced to about 40 % of the rigid lat-
tice model value by explicitly taking into account
the positional degree of  freedom of  the atoms
with the continuous displacement cluster varia-
tion method.

  It is worth pointing out that Ormeno el al.
[14] calculated the phase diagram of the Fe�Al
system using the first principle method with-
out spin polarization (Fig. 4, a) and with spin
polarization (see Fig. 4, b). The calculated
phase diagrams are topologically similar to
that shown in Fig. 3. The transition tempera-
ture between B2 and A2 states is considerably
higher in this calculation than that calculat-
ed in the present work.

Figure 5 shows the order-disorder transition
(B2→A2) calculated using γ = 1 and γ = 1.5, re-
spectively. An important characteristic of these
calculations is the relationship between the adjust-
able parameter γ and the critical temperature Tc

Fig. 3. Fe�Al phase diagram calculated using the CSA model
for γ = 1.5.

Fig. 4. Calculated order-disorder transition A2→B2

for γ = 1.5.

Fig. 5. Phase diagram of bcc Fe�Al alloys as obtained from
ab initio calculation [14]: a � without spin polarization,
b � with spin polarization.
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of the order-disorder transition, which makes the
determination of  γ value more accurate.

CONCLUSIONS

In the present study, a general formula of
the CSA for the bcc structure was derived,
based on the entropy expressions reported in
other works, and the so-called modified CVM.
The model was applied to the bcc phases in the
Fe�Al system where the energetic term was
determined using the FPC results.

In general, the obtained results are quite
encouraging because all the predicted phases
appear in the calculated phase diagram. In ad-
dition, they are in good agreement with the
previously calculated Fe�Al system using the
ab initio method.

Even though not as physically sound as the
CVM, the cluster site approximation has the
considerable advantage of  computational sim-
plicity over the CVM and seems very promis-
ing for the calculation of phase diagrams in
multicomponent systems.
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