УДК 536.46

О ПРИРОДЕ СВЕРХАДИАБАТИЧЕСКИХ ТЕМПЕРАТУР В БОГАТЫХ УГЛЕВОДОРОДНЫХ ПЛАМЕНАХ

В. В. Замащиков, И. Г. Намятов, В. А. Бунев, В. С. Бабкин

Институт химической кинетики и горения СО РАН, 630090 Hobocuбирск, bunev@kinetics.nsc.ru

Численно исследовано распространение плоского ламинарного пламени. Показано, что в богатых гомогенных смесях пропан — воздух и метан — воздух максимальная температура пламени превышает термодинамически равновесную. Степень сверхадиабатичности зависит от концентрации топлива в смеси с воздухом. Показано, что явление сверхадиабатичности богатых пламен углеводородов обусловлено диффузией водорода из зоны реакции в зону подогрева и его преимущественным (по сравнению с углеводородом) окислением. Полная энтальпия газа непостоянна по координате во фронте пламени и имеет максимум.

Ключевые слова: сверхадиабатичность газовых пламен, углеводородные пламена, диффузионные процессы в пламени, богатые пределы распространения пламени.

Явление концентрации энергии в волне горения имеет важное значение для теории горения и ее приложений [1]. В этой связи представляет интерес, как происходит концентрация энергии и как она влияет на скорость химической реакции и на процесс горения в целом. В [2] численным моделированием показано, что во фронте пламени богатых углеводородных пламен максимальная температура превышает адиабатическую. Явление сверхадиабатичности авторы работы [2] связывают с особенностями протекания химической реакции, следствием которых являются сверхравновесные концентрации Н2О. Однако, в чем конкретно выражаются эти особенности химической реакции, в [2] не сообщается.

В настоящей работе на основании анализа данных численного моделирования термохимической структуры зоны пламени показано, что сверхадиабатичность в пламенах богатых смесей углеводородов с воздухом обусловлена диффузионным потоком водорода и в меньшей степени метана из зоны химической реакции в зону подогрева, а также высокой реакционной способностью H_2 , которые приводят к сверхравновесным значениям энтальпии, температуры и концентраций H_2O , CH_4 и незначительно CO_2 .

Скорость распространения пламени в пропано- и метановоздушных смесях и его структурные характеристики рассчитывались

по методу [3, 4], кинетический механизм взят из [5]. Для расчетов пламени и равновесных состояний использовалась одна и та же кинетическая схема с базой данных термодинамических свойств частиц. В схеме использовались рекомендованные значения констант скоростей прямых реакций. Константы обратных реакций автоматически рассчитываются в программе с использованием выражения для константы равновесия, согласованного с описанием внутренней энергии частиц. Точность расчета задавалась величиной, характеризующей разницу между последней и предпоследней итерациями. Во всех наших расчетах эта величина принималась равной 10^{-4} . Положению холодной границы соответствует координата -8 см, положению горячей границы — координата +40 см. Начало координат помещено в точку, где температура во фронте пламени равна 400 К.

Анализ данных расчета показал, что максимальная температура в пламени метана и пропана может существенно превышать равновесное значение. На рис. 1 приведен профиль температуры во фронте пламени для околопредельной смеси ($10\% C_3H_8+$ воздух) при начальной температуре 298 К и давлении 0,1 МПа. Видно, что максимальное значение температуры равно 1496 К, тогда как равновесное значение — 1255 К. Приближение к равновесному значению температуры происходит сверху и еще не завершается на расстоянии более 20 см. Зона основной реакции существенно короче (≈ 1 см). После достижения температурой максимального значения в продуктах

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (номер проекта 03-03-32357).

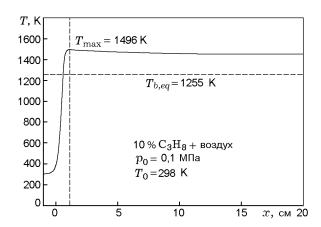


Рис. 1. Профиль температуры в пламени 10 % C_3H_8+ воздух

продолжается накопление водорода с одновременным уменьшением концентрации воды. В точке с максимальной температурой объемная концентрация Н₂ равна 13,22 % (равновесное значение 24,65 %), воды — 10,48 % (в равновесии — 3,69 %), CO — 13,96 % (в равновесии — 19,43~%), CO_2 — 2,28~% (в равновесии — 1,83 %). Концентрации CH_4 и C_2H_2 равны соответственно 1,19 и 0,13 % (в равновесном состоянии эти компоненты отсутствуют). Исходный пропан полностью расходуется на ранних стадиях. В точке с максимальной температурой его концентрация составляет уже 10^{-8} мольной доли. В зоне после максимума температуры концентрации H_2 , H_2O , CO, CO_2 , CH_4 и C_2H_2 изменяются при участии CH_4 и C_2H_2 в реакциях с H_2O и CO_2 с образованием H_2 и СО с суммарным эндотермическим эффектом. Такими брутто-реакциями могут быть следующие: $CH_4 + H_2O \rightarrow 3H_2 + CO$ с эндотермическим эффектом 5,84 кДж/(г смеси) (основная для предельной смеси пропана с воздухом) и $\mathrm{CH_4} + \mathrm{CO_2} \rightarrow \mathrm{2CO} + \mathrm{2H_2}$ с эндотермическим эффектом $4{,}11 \text{ кДж/(г смеси)}.$

На рис. 2 приведены профили относительных концентраций участников реакции в зоне пламени богатой пропановоздушной смеси. Для пропана нормирование проводилось по начальной концентрации пропана, для метана и атома водорода — по их максимальному значению в зоне реакции, для остальных компонентов — по их равновесному значению. Из рисунка видно, что скорости накопления H_2O , H_2 , CO_2 , CO, CH_4 и расходования C_3H_8 максимальны вблизи координаты x=5 мм. Однако высокие концентрации H_2O и особенно H_2 появляются

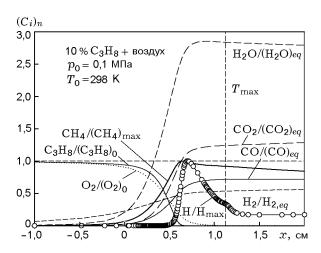


Рис. 2. Профили относительных концентраций компонентов в пламени $10~\%~\mathrm{C_3H_8} + \mathrm{воздуx}$

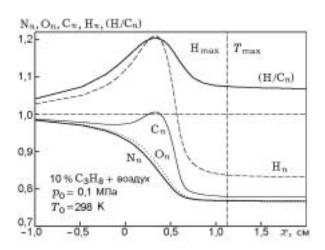


Рис. 3. Распределение относительных количеств атомов N_n , O_n , H_n , C_n и величины $(H/C)_n$ в пламени $10~\%~C_3H_8$ + воздух

существенно раньше, при $x=-(5\div 10)$ мм, и раньше, чем достигается максимальная скорость накопления радикала H (x=8 мм). Эти факты свидетельствуют о большом диффузионном потоке водорода и его предпочтительной (по отношению к углеродсодержащим соединениям) реакции с кислородом с образованием воды в предпламенной зоне. Судя по максимальному градиенту, диффузия H_2 происходит непосредственно из зоны реакции в пламени.

Если существует значительный диффузионный поток H_2 , он должен привести к пространственному изменению величины $(H/C)_n$, где H и C — общее количество атомов водо-

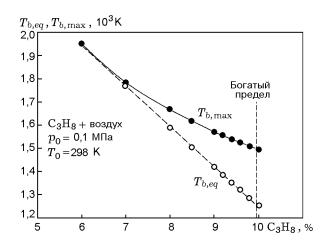


Рис. 4. Зависимость $T_{b,eq}$ и $T_{b,\max}$ от концентрации пропана в пламени C_3H_8 + воздух

рода и углерода во всех компонентах смеси. Действительно, как видно из рис. 3, в исходной смеси $(H/C)_n = 1$, а вблизи x = 3 мм достигается максимальное значение 1,204. Снижение уровня $(H/C)_n$ в продуктах реакции происходит медленно и равновесное значение $(H/C)_n = 1$ не достигается даже на расстоянии 100 см от зоны основной реакции. Таким образом, распределение $(H/C)_n$ подтверждает наличие больших количеств Н2 и Н2О в предпламенной зоне, обусловленных диффузией наиболее легкого молекулярного компонента смеси Н2 и его предпочтительной реакцией с кислородом с образованием H₂O. (Вкладом воды в величину $(H/C)_n$ за счет ее диффузии из зоны реакции в пламени можно пренебречь из-за большого различия молекулярных масс H_2O и H_2 .) Аналогичная, но менее ярко выраженная ситуация наблюдается и для метана: из-за эффективной диффузии СН₄ функция $C_n(x)$ имеет максимум вблизи координаты x = 3 мм (см. рис. 3). Что касается относительного числа атомов H_n , O_n , C_n и N_n , то уменьшение N_n обусловлено увеличением общего числа молей. Вначале, когда реакция еще не идет, изменение числа атомов азота связано с увеличением общего числа молей за счет поступления в эту зону молекулярного водорода, затем — с изменением общего числа молей за счет реакции и диффузионных процессов. Общее количество атомов кислорода изменяется практически так же, как общее число атомов азота.

На рис. 4 приведены зависимости равно-

Рис. 5. Распределение полной энтальпии газовой смеси H и стандартной энтальпии образования смеси промежуточных продуктов $\Delta H_{f,298}^0$ в зоне пламени $10~\%~\mathrm{C_3H_8}$ +воздух

весной $(T_{b,eq})$ и максимальной $(T_{b,\max})$ температур пламени от концентрации пропана в смеси с воздухом. Видно, что заметное превышение максимального значения температуры пламени над равновесным начинается в смеси, содержащей 7 % пропана. С увеличением концентрации пропана эта разница растет и достигает максимального значения 241 K на пределе распространения пламени. Для метановоздушных пламен сверхадиабатичность наблюдается для смесей с концентрацией метана выше 13 %. Аналогичная тенденция наблюдается в пламенах богатых смесей углеводородов с кислородом [2].

Обсуждаемые элементарные процессы в пламени пропана приводят к непостоянству полной (с учетом теплоты образования) энтальпии в волне горения. На рис. 5 показано изменение полной энтальпии по координате в зоне пламени для предельной смеси $10 \% C_3H_8$ +воздух. Видно, что имеется избыток энтальпии с максимумом при x=5 мм и $T \cong 1000 \text{ K.}$ Избыток энтальпии сохраняется до расстояния x=11 мм, где $T=T_{b,\max}=$ 1496 К. Энтальпия достигает своего равновесного значения на больших расстояниях от основной зоны химической реакции. На этом же рисунке показано изменение стандартной энтальпии образования газовой смеси $\Delta H_{f,298}^0$ по координате в зоне пламени. В точке с максимальной температурой пламени стандартная энтальпия образования равновесных продуктов $(\Delta H_{f,298}^0)_{eq} = -17,49 \cdot 10^9$ эрг/г, что выше стандартной энтальпии образования неравновесных продуктов. Соответственно, тепловой эффект реакции (Q_{noneq}) , равный разности между энтальпией образования исходной смеси и стандартной энтальпией образования неравновесных продуктов в этой зоне реакции, больше теплового эффекта для равновесного случая (Q_{eq}) .

Гипотезу о причине сверхадиабатической температуры в богатых углеводородных пламенах, обусловленной диффузией водорода, повидимому, впервые предложил А. И. Розловский. Согласно [6] «причина "сверхравновесного" расходования водорода, обгоняющего окисление углерода и его окиси, по-видимому, состоит в различии коэффициента диффузии и температуропроводности [7]. Заметные количества водорода диффундируют в окислительную зону, где, конкурируя с углеродсодержащими компонентами, окисляются быстрее их». Действительно, так как основным каналом образования воды является реакция $OH + H_2 \rightarrow$ $H_2O + H$, то скорость этой реакции становится зависимой от диффузии Н2, увеличиваясь пропорционально концентрации Н2 в зоне реакции.

Однако в данном случае механизм сверхадиабатичности имеет существенное отличие от механизма концентрации энергии в волне горения по Я. Б. Зельдовичу [7]. Во-первых, Я. Б. Зельдович рассматривает не плоские, как в данном случае, а искривленные пламена, где при условии D > в происходит увеличение температуры пламени на выпуклых участках фронта (здесь D и x - коэффициентыдиффузии недостающего компонента и температуропроводности смеси). Этот эффект также может наблюдаться в богатых пропановоздушных смесях. И действительно, он проявляется экспериментально, например, при низком значении числа Пекле на богатом пределе распространения пропановоздушного пламени [8]. Но при этом компонентом смеси, определяющим явление сверхадиабатичности, служит не топливо (H_2) , а окислитель (O_2) . Далее, если в механизме Зельдовича тепловой и диффузионный потоки направлены в разные стороны, то в данном случае их направления совпадают.

Наконец, в механизме Зельдовича в качестве диффундирующего недостающего компонента, как правило, рассматриваются исходные топливо или окислитель. В настоящей работе таким компонентом является продукт, возникающий в ходе реакции.

Таким образом, мы имеем дело с нетрадиционным механизмом концентрации энергии в волне горения. При этом не исключена возможность одновременной реализации обоих механизмов в реальных пламенах с «кумулятивным» эффектом явления сверхадиабатичности.

ЛИТЕРАТУРА

- Бабкин В. С., Вежба И., Карим Г. А. Явление концентрации энергии в волнах горения //
 Физика горения и взрыва. 2002. Т. 38, № 1. С. 3–11.
- 2. Lui F., Guo H., Smallwood G., Gulder O. Numerical study of the super-adiabatic flame temperature phenomenon in hydrocarbon premix flames // 29th Intern. Symp. on Combustion: Abstr. Symp. Papers. 2002. P. 12.
- 3. Kee R. J., Grear J. F., Smooke M. D., and Miller J. A. PREMIX. Sandia National Laboratories Report SAND85-8240.
- Kee R. J., Rupley F. M., Miller J. A. CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics. Sandia National Laboratories SAND 89-8009B.
- 5. **Konnov A. A.** Detailed reaction mechanism for small hydrocarbons combustion. Release 0.5 http://homepages.vub.ac.be/~akonnov/. 2000.
- 6. **Розловский А. И.** Тепловой режим горения богатых углеродсодержащих смесей подкритического состава // Докл. АН СССР. 1969. Т. 186, № 2. С. 373—376.
- 7. **Зельдович Я. Б.** Теория горения и детонации газов. М.: Изд-во АН СССР, 1944.
- 8. Korzhavin A. A., Bunev V. A., Babkin V. S., et al. Regimes of gas combustion in porous media and conditions of their existence // Proc. of the Russian-Japanese Seminar on Combustion. M.: The Russian Section of the Combustion Inst., 1993. P. 97–99.

Поступила в редакцию $14/\text{II}\ 2003\ \text{г.},$ в окончательном варианте — $14/\text{VII}\ 2003\ \text{г.}$