УДК 630*232.311.3

ОБЩАЯ КОМБИНАЦИОННАЯ СПОСОБНОСТЬ PINUS SYLVESTRIS L. НА СЕМЕННЫХ УЧАСТКАХ

© 2014 г. М. В. Рогозин

Естественнонаучный институт Пермского государственного национального исследовательского университета 614990, Пермь, ул. Генкеля, 4
Е-mail: rog-mikhail@yandex.ru
Поступила в редакцию 11.12.2013 г.

Обсуждается процедура отбора на общую комбинационную способность (ОКС) в испытаниях потомства 910 деревьев. Опыт включал четыре урожая семян и шесть их испытаний в разных условиях до 3–18 лет, всего 1425 вариантов и 41.7 тыс. растений. Применялось ступенчатое испытание с последовательным сокращением вариантов в каждом следующем урожае. Значение ОКС рассчитывали по комбинациям из любых двух урожаев (ОКС-2) и по всем четырем урожаям семян (ОКС-4). Коэффициенты корреляции ОКС-2 с ОКС-4 в среднем были высокие (0.74±0.03). При таком уровне связей перед сбором третьего урожая можно провести отбор материнских деревьев и сократить объемы испытательных культур в 2 раза, если выбрать материнские деревье с высокой в будущем ОКС (10 %). Максимумы ОКС-4 на двух участках составили 119 и 122 %.

Ключевые слова: свободное опыление, потомство, отбор материнских деревьев, испытания.

ВВЕДЕНИЕ

Генетическая ценность родительских деревьев выражается в терминах комбинационной способности – общей (ОКС) и специфической (СКС), которые определяются аддитивными и неаддитивными генетическими эффектами соответственно. ОКС отражает тучасть свойств, которую родитель может передать потомству независимо от того, какие другие родители вовлечены в скрещивание. Родители с высокой ОКС рассматриваются как хорошие партнеры для скрещиваний, и в лесных селекционных программах используется чаще всего именно аддитивная часть генетической дисперсии (Царев и др., 2010).

Общую комбинационную способность выражают в процентах по отношению к высоте контроля (либо ко всем семьям в опыте) и получают оценки генетической ценности родителей, по которым рассчитывают ожидаемое улучшение для ЛСП-2. Оценки ОКС получают чаще всего при изучении потомства от сво-

бодного опыления – семей полусибов. Так как состав опылителей меняется, то необходимы испытания потомства, полученного из семян по меньшей мере от трех урожаев (Шутяев, 2011; Указания..., 2000; Положение..., 1994). В практической селекции используют оценки и по одному урожаю (Ефимов, 1997; Туркин, 2007; Шейкина, 2004; Митрофанов, Кузнецов, 2006), однако при этом остается совершенно неясным, каким окажется ОКС материнского дерева в репродукциях следующих лет. Если бы вклад каждого из опылителей, скрещивающихся с изучаемым материнским деревом, не менялся по годам и был бы, например, при числе клонов в 50 шт. всегда около 2 %, то тогда можно было бы взять результаты однократного испытания и рассчитать по ним оценки ОКС. Именно так и поступают при контролируемом опылении смесью пыльцы от некоторого множества опылителей. Но пыльцевая продуктивность деревьев как в естественных условиях, так и на лесосеменных плантациях сильно колеблется по годам, при этом

некоторые особи и клоны дают феноменальное количество пыльцы и буквально несколько клонов производят более половины пыльцы на всем участке (Тараканов и др., 2001).

В связи с наличием столь изменчивого фактора, влияющего на ОКС, была поставлена задача исследования: в потомстве сосны обыкновенной от свободного опыления выяснить число семенных репродукций от каждого материнского дерева для определения его ОКС с приемлемой точностью. Наиболее же актуальным в этом плане оказывается вопрос о том, возможно ли по семенам одного из урожаев прогнозировать рост потомства из семян других урожаев.

ОБЪЕКТЫ И МЕТОДЫ

В селекцию были вовлечены четыре постоянных лесосеменных участка (ПЛСУ), располагавшихся в период их изучения в 1978—1985 гг. в следующих лесничествах (л-вах) и лесхозах Пермского края (в скобках указан современный номер квартала):

Очерский – кв. 33 Очерского л-ва Оханского лесхоза, 2 га;

Пермский – кв. 28 (107) Пермского л-ва Пермского лесхоза, 10 га;

Левшинский – кв. 19 (23) Левшинского л-ва Пермского лесхоза, 7 га;

Нижне-Курьинский — кв. 46 (18) Нижне-Курьинского л-ва Закамского лесхоза, 5 га.

Левшинский ПЛСУ изучали в два приема: в 1978 и в 1979 гг. В тексте введены их разграничения: Левшино-1 и Левшино-2.

Возраст деревьев на начало исследований варьировал от 15 до 19 лет, густота — от 120 до 300 шт./га. Условия местопроизрастания на всех участках: типы леса — сосняки и ельники

кисличниковые, почвы — суглинистые дренированные, за исключением Нижне-Курьинского участка, где почвы супесчаные, подстилаемые с 90 см плотным легким суглинком. Пермский и Левшинский ПЛСУ созданы в 1962 г. посадкой отборных сеянцев по схеме 12 м × 5 м, полученных из семян, заготовленных в 1959 г. с крупных деревьев сосны в сосняке кисличниковом I бонитета при прорубке просеки для нефтепровода в кв. 102 Пермского лесничества Пермского лесхоза. Другие ПЛСУ сформированы изреживанием культур.

Отбор урожайных маточников проводили по 1—3 урожаям. Всего семеношение изучено у 1703 деревьев, а содержание семян в шишках в первом урожае — у 1375 деревьев (81 %); далее семеношение изучали в разные годы у меньшего числа деревьев, которые по итогам испытаний потомства оказывались лучшими. Всего получено 2206 образцов семян, для 910 из которых проведены испытания на быстроту роста (табл. 1).

Испытательные культуры и школы заложены в 1980–1991 гг. в Очерском, Оханском, Закамском, Пермском, Кудымкарском лесхозах (ныне одноименные лесничества) на семи участках площадью 13.7 га. Схема посадки растений была с расстоянием в ряду 0.7 м, между рядами – от 2.5 до 3.9 м. Сохранность растений составила: в культурах – от 70 до 46 %, в школах – от 92 до 40 %; получены данные о высоте в общей сложности 41.7 тыс. растений по 1425 вариантам (табл. 2).

Структура испытаний у сосны оказалась сложной, ниже показаны годы сбора образцов и основные этапы испытаний с кратким указанием особенностей выращивания в общей сложности 1361 семьи от нескольких урожаев 910 материнских деревьев (табл. 3).

Таблица 1. Исходный материал для селекции сосны обыкновенной в Пермском крае

ПЛСУ	Деревьев, шт.	И	Изучено семеношение деревьев по годам, шт.									
		1977, 1978	1979	1982	1983	1985	1990	Итого	первым урожаям, шт.			
Очерский	196	109	40	53	_	_	12	214	156			
Пермский	324	292	64	_	_	58	_	414	216			
Левшино-1	508	496	109	61	_	60	_	726	211			
Левшино-2	364	_	239	155	_	41	_	435	93			
Нижне-	311	_	_	239	30	114	34	417	234			
Курьинский												
Итого	1703	897	452	508	30	273	46	2206	910			

Примечание. Прочерк – семеношение не изучалось.

Таблица 2. Испытательные культуры (ИК) и школы (ИШ) потомства сосны обыкновенной, заложенные в Пермском крае

Год	Me	естонахождение		Пло-	_			Расте-	
за- клад- ки	Лесничество	Участковое лесничество	Квар- тал	щадь, га	Вид опыта и потомство	семьи	контроль- ные	Все-	ний, тыс. шт.
1980	Очерское	Очерское	85	1.0	ИК Очер	102	0	102	2.7
1980	Кудым-	Bepx-	82	1.1	ИК Очер	63	0	63	1.7
	карское	Юсьвинское							
1981	Пермское	Нижне-	25	0.2	ИШ Левш	171	3	174	5.2
1982	городское	Курьинское	23	0.3	ИШ Перм	216	3	219	5.9
1983	Закамское	Нытвенское	69	0.3	ИШ Н-К	233	12	245	5.3
1984	Пермское	Нижне-	65	1.5	ИК Н-К	121	10	177*	3.5
1904	городское	Курьинское	03	1.5	ИК Н-К	30	10	1//	3.3
					ИК Очер	53			
1988		Оханское	29	7.0	ИК Левш	134	10	309	14.5
					ИК Н-К	112			
	Оханское		_		ИШ Очер	8			
			Пи-		ИШ Левш	63			
1990	Рождественское	TOM-	0.3	ИШ Перм	21	10	136	2.9	
			ник		ИШ Н-К	34			
Итого	I	I	I	11.7	1111111-10	1361	48	1425	41.7

Примечания. Очер – Очерское; Левш – Левшинское; Перм – Пермское; Н-К – Нижне-Курьинское; 177* – с учетом 16 семей, выращенных с затенением сеянцев.

Таблица 3. Распределение потомства ПЛСУ по годам урожая и по видам испытаний

ПЛСУ	ПЛСУ Материн- ских де- ревьев, шт. Год урожая Место выращива- ния посадочного материала		Вид испытаний и почва	Воз- раст, лет	Семей						
	Первые урожаи и испытания										
	102	1977	тепл (2),	ИК супесч.	4	102					
Очерский	102	19//	пит (2)	ИК суглин.	6	63					
	53	1985	пит (2),	ИК песч.	9	53					
Левшинский	171	1979	пит (1)	ИШ супесч.	3	171					
Левшинскии	134 1985		пит (2)	ИК песч.	9	134					
Пермский	216	1981	пит(2)+шк(2)	ИШ супесч.	4	216					
	234	1982	тепл (1)	ИШ песч.	7	233					
Цимена Изгранизаций		1962	пит(1)+шк(2)	ИК супесч.	18	121					
Нижне-Курьинский	234	1983	пит(1)+шк(2)	ИК супесч.	18	30					
		1985	пит (2)	ИК песч.	9	112					
Итого	910					1235					
		I	Іоследние испытания								
Очерский	12	1990	тепл (1)	ИШ супесч.	4	8					
Левшинский	63	1985	тепл (1)	ИШ супесч.	4	63					
Пермский	21	1985	тепл (1)	ИШ супесч.	4	21					
Нижне-Курьинский	34	1990	тепл (1)	ИШ супесч.	4	34					
Итого	130					126					
Всего вариантов исп	ытаний потом	ства 910 мат	геринских деревьев			1361					

Примечание: пит – питомник; тепл – теплица; песч. – песчаные, супесч. – супесчаные, суглин. – суглинистые почвы.

Представленность семей в опытах была разной и определялась общей стратегией работ, а именно ступенчатым сокращением числа испытываемых семей. Сокращения эти, а также вынужденное испытание в школе до 7 лет определялись ограниченностью площа-

дей, пригодных для создания культур. При этом мы старались отбирать материнские деревья со средней и высокой семенной продуктивностью и с показателями роста их семей в ранее проведенных испытаниях не менее 110 % от контроля. Первое подведение итогов

испытания семенами разных урожаев проведено в 1987 г. (Рогозин, 1987).

Расчет ОКС проведен по рекомендациям А. П. Царева (Царев и др., 2010). При анализе данных использовали коэффициент корреляции Пирсона с расчетом ошибки, содержащейся в формуле для его приближенной интервальной оценки (Плохинский, 1970):

$$\left(r-t\frac{1-r^2}{\sqrt{n}};r+t\frac{1-r^2}{\sqrt{n}}\right),$$

где r — коэффициент корреляции Пирсона; t — критерий Стъюдента ($t_{0.05} = 2.0$); n — число пар наблюдений.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Корреляции высот семей, выращенных из семян двух урожаев трех ПЛСУ, оказались недостоверными, однако на одном (Нижне-Курьинском) три из шести корреляций оказались достоверными (табл. 4). В целом по всем опытам оценка по 368 парам семей дает среднее значение корреляции $r = 0.16 \pm 0.05$. Такой низкий уровень связи не позволяет по семенам одного из урожаев прогнозировать рост потомства из семян другого урожая. Возникает задача выяснения минимума репродукций от материнского дерева для определения ОКС с приемлемой точностью.

Следующим этапом работ было выяснение прогностической ценности значений ОКС, полученных в результате испытания семян трех урожаев, как это рекомендуется (Положение..., 1994).

Отбор на ОКС материнских деревьев Очерского участка проведен в результате изучения потомства 129 деревьев. Их число постепенно сокращали в каждом следующем испытании с учетом данных о росте в возрасте 4–6 лет потомства от предыдущего урожая. После четырех испытаний тремя урожаями семян сформирована группа из семи материнских деревьев, у которых хотя бы в одном испытании высота растений в семье была более 110 % от контроля (табл. 5).

Эти 7 деревьев были селекционированы в результате ступенчатого отбора, в котором испытывали первое потомство 129 деревьев; следовательно, отбор матерей с высокими значениями ОКС произведен с интенсивностью $7/129 \sim 0.054$. Наиболее же ценные маточники (ОКС 116-122 %) дает отбор с интенсивностью $2/129 \sim 0.016$.

В потомствах Нижне-Курьинского ПЛСУ измерено наибольшее число семей и испытано четыре урожая семян.

От первого урожая (1982 г.) в школе до трех лет выращено 234 семьи, из которых в культуры на супесчаную почву (в сосняк кисличниковый) в кв. 83 Нижне-Курьинского лесничества высажена 121 семья с измерениями в 6, 12 и 18 лет; от этого же урожая параллельно 233 семьи выращивали в теплице и пересадили в школу на сухую песчаную почву, где их вынужденно выращивали до семи лет.

От второго урожая (1983 г.) вырастили 30 семей в питомнике, 16 из которых с затенением сеянцев на 2 часа; оба варианта опыта

Таблица 4. Корреляции высот семей сосны от урожаев разных лет

Лесосеменной участок	Годы сбора семян	Возраст, лет	Число пар семей, по которым рассчитана корреляция	r	Ошибка <i>r</i>
Очерский	1977–1985	3–9	36	0.03	0.17
Пермский	1979-1984	4–4	21	0.04	0.22
Левшино-1	1979-1984	3–4	23	0.30	0.21
Левшино-2	1985-1990	9–4	40	-0.22	0.16
	1982-1983	18–18	29	0.17	0.18
	1982-1985	18–9	109	0.31*	0.09
Нижне-	1982-1990	18–4	34	0.38*	0.15
Курьинский	1983-1985	18–9	28	0.24	0.18
	1983-1990	18–4	14	-0.06	0.27
	1985-1990	9–4	34	0.38*	0.15
Итого		3–18	368		
В среднем				0.16*	0.05

^{*} Корреляция достоверна при $t_{0.05}$.

Ранг ма-]	Год урожая и	возраст се	мей				
тери по ОКС	Число опытов	1977		1985	1990	Среднее ОКС, %	Ошибка ОКС, ±%	Общее число растений	
		6 лет	4 года	9 лет	4 года	, , ,	, , ,	r	
1	4	139	131	120	99.4	122.3	1.9	131	
2	4	119	123	100	122.6	116.2	2.1	112	
3	4	117	100	108	103.2	107.1	2.6	102	
4	4	91	120	103	112.9	106.7	2.2	110	
5	3	_	112	104	114.5	110.2	2.3	115	
6	3	118	105	103	_	108.7	1.9	113	
7	3	_	117	105	98.9	107.0	1.8	91	
Среднее	3.6	116.7	115.4	106.1	108.6	111.1	2.1	110.6	

Таблица 5. ОКС (%) лучших семей Очерского ПЛСУ в испытаниях семенами трех урожаев в разных условиях до возраста 3–9 лет

высадили в те же культуры в кв. 83 с измерениями в 6, 12 и 18 лет.

От третьего урожая (1985 г.) вырастили 112 семей и высадили их в культуры на песчаной почве в кв. 29 Оханского лесничества с измерениями в 7 и 9 лет. Далее измерения прекратили, так как культуры были повреждены лосем и полностью погибли.

От четвертого урожая (1990 г.) испытывали 34 семьи в школе до четырех лет в питомнике Рождественского лесничества Оханского лесхоза.

Было интересно выяснить, насколько точна оценка ОКС материнских деревьев по потомствам от трех урожаев семян, которая рекомендуется в качестве обязательной и может выступать в качестве оценки ее генетического преимущества, и как оно проявляется в четвертом урожае. Для этого мы рассчитали два значения ОКС: по всем шести испытаниям четырех урожаев (ОКС-4) и по 3–5 испытаниям трех урожаев (ОКС-3).

Результаты описанных выше шести испытаний потомства Нижне-Курьинского ПЛСУ от четырех урожаев, продолжавшихся 17 лет, с 1983 по 2000 г., были приведены в систему и отражены в табл. 6.

Анализ табл. 6 показывает, насколько непростыми в этих ступенчатых испытаниях были решения о повторном включении или исключении из испытаний некоторых деревьев, что было связано, во-первых, с ожиданием результатов тестирования первого урожая и, во-вторых, со снижением семенной продуктивности у некоторых деревьев.

У матерей с быстрорастущим потомством испытывали 3-4 урожая семян, а у растущих

средне и медленно — 2—3, осуществляя ступенчатый отбор. Перед сбором четвертого урожая данные всех испытаний были обобщены и выбраны 34 материнских дерева, в основном лучших по высоте их семей, имевших среднюю и высокую семенную продуктивность как ранее, так и в год сбора последнего, четвертого, урожая.

Всего оценки ОКС-3 получены для 114 материнских деревьев, но в табл. 6 показаны только 84 с ОКС-3 более 100 %. В головке таблицы введен шифр испытаний по урожаям, отражающий номер урожая с 1 по 4 и отличия в условиях (ш – в школе, т – в тени), в частности, шифры (1), (1ш), (2), (2т), (3), (4) необходимы для понимания процедуры дальнейших расчетов.

Рассмотрим случаи объединения значений высоты семей из любых двух урожаев и обозначим среднюю высоту потомства в них как ОКС-2. Корреляции между ОКС-2 с неповторяющимися урожаями слабые и в каждом отдельном случае из шести возможных комбинаций почти всегда недостоверные (табл. 7).

Однако в совокупности для 86 пар сравниваемых значений средняя корреляция достоверная, но слабая ($r=0.24\pm0.10$).

Другое сравнение оценок в виде комбинаций ОКС-2 с общей ОКС-4 и корреляции их значений как связи части и целого оказываются в среднем довольно высокими ($r=0.74\pm \pm 0.03$). Связи высоки по той причине, что в общую ОКС-4 входят ее части в виде ОКС-2 и входят почти как половина ее значений, задействованных для расчета (см. табл. 7).

Эти высокие связи позволяют для дальнейших испытаний проводить отбор на ОКС всего

Таблица 6. ОКС сосны Нижне-Курьинского ПЛСУ по 3–4 урожаям в 3–6 испытаниях потомства (фрагмент списка из 114 матерей)

		ота семей						ОКС, %		-	
Ранг матери по ОКС-3	1982, 18 лет (1)	раст и обо 1982, 7 лет, школа (1 ш)	1983, 18 лет свет (2)	1983, 18 лет тень (2 т)	1985, 9 лет (3)	1990, 4 года (4)	Число расте- ний	ОКС-3	ОКС-4	Ошиб- ка ОКС-4, ±%	Число испы- таний
1	2	3	4	5	6	7	8	9	10	11	12
1	122.9	124	_	_	113	117.2	112	120	119.3	1.9	4
2	121.8	121	122	113	114	108.3	137	118.4	116.7	1.7	6
3	132.2	120	112	_	109	107.4	124	118.3	116.1	2.1	5
4	111.4	122	119	_	116	114.7	156	117.1	116.6	1.7	5
5	119.2	108	_	_	116	104.7	118	114.4	112	2.1	4
6	110.1	110	119	108	123	106.3	149	113.9	112.6	1.7	6
7	116.6	111	_	_	114	105.5	112	113.9	111.8	2.1	4
8	101.1	124	_	_	115	98.8	113	113.4	109.7	2.2	4
9	120.7	95	_	_	123	_	77	112.9	112.9	2.5	3
10	113.2	104	_	_	119	107.9	122	112.1	111	2.3	4
11	121.6	98	_	_	115	_	78	111.5	111.5	3.0	3
12	115.6	106	126	114	94	110.3	171	111.2	111.1	1.4	6
13	102	119	116	_	107	110.4	121	110.9	110.8	2.3	5
14	106.1	117	_	_	109	_	87	110.7	110.7	2.6	3
15	99.1	117	107	_	118	122.2	116	110.4	112.7	2.1	5
16	111.5	124	106	_	99	_	68	110.1	110.1	2.2	4
17	103.9	111	117	113	106	106.6	130	110.1	109.5	1.8	6
18	113	116	_	_	101	101.6	109	110	107.9	2.5	4
19	111.7	104	113	116	101	101.1	135	109.2	107.8	2.1	6
20	111	113	112	113	97	_	112	109.1	109.1	1.9	5
21	113.6	107	_	_	106	98.9	92	108.9	106.4	2.1	4
22	101.3	111	109	_	113	110.3	147	108.6	108.9	1.6	5
23	107.3	110	107	110	_	_	75	108.5	108.5	2.6	4
24	114.7	111	98.9	_	109	106.9	139	108.4	108.1	2.2	5
25	113.2	109	_	_	103	_	101	108.4	108.4	1.9	3
26	112.5	105	117	_	99	105.2	94	108.3	107.7	1.7	5
27	117.9	106	_	_	101	_	71	108.3	108.3	1.8	3
28	107.3	107	_	_	110	104.9	120	108.1	107.3	2.2	4
29	113	109	_	_	102	_	77	108	108	2.7	3
30	110.6	95	113	_	113	110.3	128	108	108.5	2.1	5
31	109.9	107	_	_	107	101	124	108	106.2	2.6	4
32	107.3	105	112	_	_	_	56	107.9	107.9	2.9	3
33	100.6	109	_	_	114	_	95	107.9	107.9	2.4	3
34	109.9	105	_	_	105	111.3	125	106.6	107.8	1.9	4
35	105.8	107	_	_	107	102.9	112	106.6	105.7	2.1	4
36	104.8	108	_	_	106	106.3	117	106.3	106.3	2.0	4
37	107.4	107	_	_	104	_	80	106.1	106.1	2.5	3
38	110.6	110	_	_	97	_	122	105.9	105.9	2.6	3
39	104.1	90	115	113	106	_	137	105.8	105.8	1.5	5
40	103.9	94	115	99	116	_	103	105.6	105.6	1.6	5
41	106	100	105	110	107	_	166	105.5	105.5	1.4	5
41	112.1	107	99.6	110	98	_	131	105.4	105.4	1.6	5

Окончание табл. 6

Окончание таол, о											
1	2	3	4	5	6	7	8	9	10	11	12
43	115.3	104	_	_	96	_	104	105.1	105.1	1.9	3
44	104.8	108	_	-	102	_	80	104.9	104.9	2.4	3
45	109.7	108	_	_	97	_	42	104.9	104.9	3.2	3
46	109.7	96	_	_	109	_	53	104.9	104.9	3.0	3
47	102.6	111	_	_	101	97.1	93	104.9	102.9	2.1	4
48	111.4	95	_	_	108	109.5	98	104.8	106	1.9	4
49	106.7	103	_	_	104	_	87	104.6	104.6	2.5	3
50	_	103	_	_	106	100.1	88	104.5	103	2.4	3
51	104.1	102	112	103	101	93.5	134	104.4	102.6	1.4	6
52	112.5		_	_	96	_	61	104.3	104.3	2.9	2
53	94.6	112	_	_	106	94.8	117	104.2	101.9	2.2	4
54	108.4	95	_	_	109	_	61	104.1	104.1	2.5	3
55	104.3	87	122	110	97	_	114	104.1	104.1	1.7	5
56	115.8	90	112	_	99	_	79	104.1	104.1	2.4	4
57	108	90	_	_	114	107.7	102	104	104.9	2.1	4
58	109.9	105	_	_	97	_	93	104	104	2.5	3
59	113.4	98	_	_	100	_	102	103.8	103.8	2.5	3 3
60	105.2	99	_	-	107	_	86	103.7	103.7	2.6	3
61	101.9	105	_	-	104	113.5	113	103.6	106.1	2.0	4
62	109.9	103	_	_	97	_	88	103.3	103.3	2.3	3
63	100.2	100	_	_	109	_	67	103.1	103.1	2.9	3 3
34	98.9	95	_	_	115	_	68	103	103	2.7	3
65	99.8	99	_	_	110	103.8	108	102.9	103.2	2.1	4
66	111.5	89	_	_	108	_	80	102.8	102.8	2.4	3
67	_	89	112	110	100	_	93	102.8	102.8	2.3	4
68	111	100	_	_	97	_	95	102.7	102.7	1.9	3
69	100.7	105	_	_	102	_	52	102.6	102.6	2.8	3 3 3
70	119.6	103	_	_	85	_	50	102.5	102.5	3.2	3
71	111	94	_	_	102	_	79	102.3	102.3	2.6	
72	99.6	113	_	_	93	_	91	101.9	101.9	1.9	3
73	105.4	99	_	_	101	_	66	101.8	101.8	2.4	3
74 75	99.3	100	_	_	106	_	70	101.8	101.8	3.0	3 3
75 76	106	106	_	_	93	_	79	101.7	101.7	2.8	
76	102.8	93 96	106	112	109	_	91	101.6	101.6	2.0	3
77 78	103.9 102.8	107	106	113	90 94	_	148	101.6 101.3	101.6 101.3	1.5 1.9	5
78 79	93.7	107	_	_	108	_	96 87	101.3	101.3	2.4	3
80	100.4	102	_	_	108	_	73	101.2	101.2	2.4	3
81	100.4	90	_	_	106	_	67	101.1	101.1	3.0	3
82	100.2	105	_	_	98	_	95	101.1	101.1	2.7	3
83	109.7	89	_	_	104	_	88	100.9	100.9	2.3	3
84	98	100	_	_	104	101.3	70	100.7	100.8	2.9	4
Сред- нее	108.4	104.5	112.5	110.3	105.1	106.0	99.6	106.5	106.2	2.2	3.8

по двум урожаям, если его значение использовать как критерий для отбора материнских деревьев перед сбором образцов для очередных испытаний. Моделирование отбора для двух случаев типичных корреляций ОКС-2 с ОКС-4 со значениями коэффициентов корреляции 0.75 и 0.67, близких к среднему значению, по-

казывает, что критерий можно принять на уровне 108–109 % (см. рисунок).

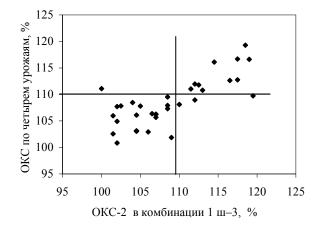
При таком критерии отбора мы сможем захватить почти все материнские деревья (10 из 11 или более 90 %) с высокими в будущем значениями ОКС-4.

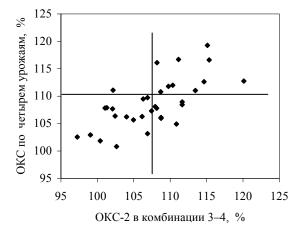
Таблица 7. Комбинации и сочетания испытаний потомства разными урожаями и расчет связей между ОКС, полученными в этих комбинациях и сочетаниях

Возможные пары комбинаций в ряду из шести испытаний
(шифры (1), (1ш), (2), (2т), (3), (4) в шапке табл. 6)
и их корреляция с ОКС-4 (корреляция части и целого)

Корреляции между двумя ОКС-2, в которых годы урожаев не повторяются

Комби- нация по шифрам (ОКС-2)	Возраст в обра- зованной паре испытаний, лет		Корре- ляция с ОКС-4 <i>r</i>	Ошибка <i>r</i>	Число пар	Сочетания ОКС-2	Корреля- ция <i>r</i>	Ошибка <i>r</i>	Число пар
(OKC-2)	первый	второй							
1	2	3	4	5	6	7	8	9	10
1–2	18	18	0.55**	0.19	14	1-2; 3-4	-0.18	0.26	14
1–3	18	9	0.79**	0.17	34	1ш-2; 3-4	0.30	0.24	14
1–4	18	4	0.83**	0.17	34	1-3; 2-4	0.22	0.25	15
1ш–2	7	18	0.81**	0.27	14	1ш-3; 2-4	0.33	0.23	15
1ш-3	7	9	0.75**	0.17	34	1-4; 2-3	0.31	0.24	14
1ш– 4	7	9	0.84**	0.17	34	1ш–4; 2–3	0.47*	0.21	14
2–3	18	9	0.70**	0.27	14	_	_	_	_
2–4	18	4	0.68**	0.26	15	_	_	_	_
2т-3	18	9	0.77**	0.29	12	_	_	_	_
3–4	9	4	0.67**	0.17	33	_	_	_	_
Итого	_	_	_	_	238	_	_	_	86
Среднее	13.8	9.3	0.74**	0.06	_	_	0.24**	0.10	_


^{*} Корреляция достоверна при $t_{0.10}$; ** корреляция достоверна при $t_{0.05}$.


ЗАКЛЮЧЕНИЕ

Таким образом, расчеты значений ОКС по четырем репродукциям от свободного опыления показали следующее. Высота 368 пар семей, выращенных из семян двух любых урожаев, коррелировала с $r = 0.16 \pm 0.05$. Такой низкий уровень связи не позволяет по семенам одного из урожаев прогнозировать рост потомства из семян других урожаев.

Определение значения ОКС по двум любым урожаям имеет высокий уровень связи с

последующим более точным ее определением в четырех урожаях семян при $r = 0.74\pm0.03$. При выполнении условия, что в 4—9-летнем возрасте потомства высота семей в этих двух репродукциях окажется в среднем не менее 108% от контроля, можно провести отбор по этому значению ОКС и в 2 раза сократить объемы закладки испытательных культур семенами третьего и последующих урожаев. При этом неизбежны и некоторые потери, так как захватываются не все, а только около 90% материнских деревьев с высокой в будущем ОКС.

Связь между значениями ОКС, полученными по потомствам от четырех урожаев с ОКС-2, полученными по потомствам от двух урожаев в комбинации испытаний 1 ш–3 (слева) и в комбинации испытаний 3–4 (справа). Пояснения по шифрам комбинаций см. в тексте и в таблицах 6 и 7.

Максимальные значения ОКС, полученные как среднее из высоты семей в четырех репродукциях, составили 119–122 % от высоты контроля.

Работа в рамках базовой части выполнена за счет финансовой поддержки Министерства образования и науки Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

- Ефимов Ю. П. Семенные плантации в лесной селекции и семеноводстве: Автореф. дис. ... д-ра с.-х. наук. Йошкар-Ола, 1997. 45 с.
- Митрофанов С. Ф., Кузнецов В. Л. Выявление общей комбинационной способности плюсовых деревьев // Лесн. хоз-во. 2006. № 1. С. 28–29.
- Плохинский Н. А. Биометрия. Изд. 2-е. Учеб. пособ. для студентов биол. спец. ун-тов. М.: Изд-во МГУ, 1970. 367 с.
- Положение о государственном испытании и охране сортов лесных пород в Российской Федерации // Федеральная служба лесного хозяйства России. М., 1994. 7 с.

- Рогозин М. В. Рост потомства сосны от урожаев разных лет // Лесная геоботаника и биология древесных растений: сб. науч. тр. Брянск: БТИ, 1987. С. 106–109.
- Тараканов В. В., Демиденко В. П., Ишутин Я. Н., Бушков Н. Т. Селекционное семеноводство сосны обыкновенной в Сибири. Новосибирск: Наука. Сиб. отд-ние, 2001. 230 с.
- Туркин А. А. Испытание потомства плюсовых деревьев сосны обыкновенной на примере Республики Коми: Дис. ... канд. с.-х. наук. Сыктывкар, 2007. 144 с.
- Указания по лесному семеноводству в Российской Федерации. Утв. фед. службой лесн. хоз-ва России 11.01.2000 г. М., 2000. 197 с.
- *Царев А. П., Погиба С. П., Лаур Н. В.* Генетика лесных древесных растений. М.: МГУЛ, 2010. 385 с.
- Шейкина О. В. Селекционно-генетическая оценка плюсового генофонда сосны обыкновенной Чувашской Республики: Дис. ... канд. с.-х. наук. Йошкар-Ола, 2004. 203 с.
- Шутяев А. М. Каким быть лесному семеноводству в XXI веке (книга-обзор). Воронеж: Истоки, 2011. 248 с.

General Combination Ability of Common Pine (*Pinus Sylvestris* L.) on Seminal Gardens

M. V. Rogozin

Natural Sciences Institute of the Perm State National Research University Genkelya str., 4, Perm, 614990 Russian Federation E-mail: rog-mikhail@yandex.ru

Procedure of selection is described on general combination ability (GCA) in the tests of posterity 910 trees. 1425 variants and 41.7 thousand descendants were tested to age 3–18. Tests were completed for four harvests of seed in six tests in the different environments. Tests had the stages and in every next harvest the variants minimized gradually. GCA was expected on combinations from any two harvests (GCA-2) and on all four harvests of seed (GCA-4). The coefficients of correlation of GCA-2 with GCA-4 on the average were high (0.74±0.03). At such level of connections, before taking the third crop it is possible to conduct the selection of source trees and to reduce their number and the number of test plantings by half if GCA-2 at a tree will appear on the average no less than 108 %. During such selection there will be some losses of source trees with high future OKC (about 10 %). A maximal value GCA-4 at too gardens was 119 and 122 %.

Keywords: free pollination, posterity, selection of seed source trees, testing.