УДК 546.654:536.2.023:536.212.2:536.221

Температуропроводность сплава La_{98.8}Fe_{1.2} в интервале температур 293-1623 К*

И.В. Савченко, Д.А. Самошкин, С.В. Станкус

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: savchenko@itp.nsc.ru

Лазерно-импульсным методом измерена температуропроводность сплава La_{98.8} Fe_{1.2} в температурном интервале 293–1623 К твердого и жидкого состояний, включая области фазовых превращений. Погрешности измерений составили ± (3–6) %. Получены аппроксимирующие уравнения и таблицы справочных данных по теплопроводности и температуропроводности сплава La_{98.8} Fe_{1.2} для научного и практического использования. Проведено сопоставление результатов измерений с известными литературными данными по температуропроводности чистого лантана.

Ключевые слова: теплопроводность, температуропроводность, лантан, конденсированное состояние, лазерно-импульсный метод, высокие температуры, фазовые переходы.

Введение

Теплопроводность и температуропроводность лантана в конденсированном состоянии исследовались в достаточно большом числе работ [1–11], однако расхождение полученных данных в ряде случаев существенно превышает оцениваемые погрешности измерений (рис. 1). Так, данные, полученные в исследовании [4], более чем в 1,5 раза превышают результаты других исследований. Возможной причиной плохого согласования коэффициентов переноса тепла может являться различный примесный состав исследованных образцов. В работе [3] было показано, что температуропроводность для загрязненного образца (~ 99 масс. % La) лежит на 10 % ниже данных, полученных на более чистом образце (~ 99,9 масс. % La). В других работах [1, 2, 4–11] вопросу влияния примесей на результаты измерений температуропроводности внимания не уделялось.

Известно, что существенное влияние на свойства редкоземельных металлов (P3M) оказывают примеси, образующие с ними промежуточные соединения. Роль легирующих добавок, не образующих новых фаз с основным компонентом, на сегодняшний день практически не изучена. Цель настоящей работы — экспериментальное исследование температуропроводности сплава $La_{98.8}$ Fe_{1.2} в широком интервале температур твердого и жидкого состояний и сопоставление полученных результатов с данными по чистому лантану для определения влияния железа (одна из основных примесей в P3M) на коэф-фициенты переноса тепла.

^{*} Работа выполнена при финансовой поддержке РНФ (проект № 17-79-10237).

[©] Савченко И.В., Самошкин Д.А., Станкус С.В., 2020

Рис. 1. Сопоставление результатов измерения температуропроводности сплава La_{98.8}Fe_{1.2} с данными других работ по температуропроводности чистого лантана.
 Данные настоящей работы (1) и работ [9] (2), [8] (3), [7] (4), [10] (5), [5] (6), [11] (7), [6] (8), [2] (9), [3] (образец с примесями) (10), [3] (чистый образец) (11), [1] (12), [4] (13).

Методика измерений и экспериментальная техника

Для определения теплопроводности (λ) и температуропроводности (a) использовался метод лазерной вспышки. Основные эксперименты были выполнены на установке LFA–427 [12]. Образцы вырезались из слитка, где содержание лантана составляло 99,4 масс. %, железа 0,5 масс. %. Результаты химического анализа методами атомно-эмиссионной спектроскопии и масс-спектроскопии показали наличие в исходном слитке также других примесей: Ca — 0,016 %, Ce — 0,07 %, Cr — 0,0025 %, Cu — 0,007 %, Mo — 0,0015 %, Nb — 0,028 %, Nd — 0,0003, Ni — 0,013 %, Pd — 0,0004 %, Pr — 0,0005 %, Sm — 0,0003 %.

В настоящей работе, как и при исследовании неодима [13] и самария [14], применялись две измерительные методики. При температурах ниже температуры β - γ -фазового перехода (T < 1000 K) опыты выполнялись по стандартной методике со «свободными» образцами, уже опробованной авторами для твердых P3M [15, 16]. Использовался образец, имеющий форму диска диаметром 12,6 мм и толщиной около 2 мм. Эксперименты проводились в вакууме при ~ $2 \cdot 10^{-5}$ мбар. Нижняя поверхность образца нагревалась лазерным импульсом длительностью 0,8 мс с энергией до 4 Дж, температура верхней поверхности регистрировалась инфракрасным детектором, выполненным на основе антимонида индия, который охлаждался жидким азотом. Измерения проводились после длительного термостатирования образцов при постоянной температуре в серии из трех «выстрелов» лазера. Расчет коэффициента температуропроводности проводился с учетом тепловых потерь со всех поверхностей образца по модели, описанной в исследовании [17]. Вводилась поправка на конечную длительность лазерного импульса и его реальную форму [18]. Тепловое расширение образцов учитывалось по данным работы [19].

Высокая пластичность лантана в высокотемпературной у-фазе не позволяла проводить измерения на «свободных» образцах. По этой причине эксперименты выше 1000 К выполнялись на образцах, заплавленных в танталовую ячейку, конструкция которой и геометрические размеры были аналогичны ячейке, описанной в работе [20]. Образец представлял собой плоский слой толщиной $\approx 2,4$ мм, который формировался между дном тигля и вставкой. Предварительно очищенные образец сплава La_{98.8}Fe_{1.2} и танталовая ячейка отдельно друг от друга отжигались в вакууме при $\sim 2 \cdot 10^{-5}$ мбар в течение 4 часов при температурах ~ 900 и 1500 К соответственно. После остывания печи до комнатной температуры образец и ячейка перемещались в перчаточный бокс с аргоновой атмосферой. Внутри бокса проводились измерения масс образца и деталей ячейки, после чего ячейка герметизировалась с помощью дуговой сварки. Такой подход позволял максимально исключить влияние окислов на результаты опытов. Для создания контакта образца с деталями ячейки измерения начинались от максимальной температуры, существенно превышающей температуру плавления (1172 К). Для получения значений теплопроводности и температуропроводности использовалась расчетная модель, подробно описанная в работе [20]. Оцененная по методике [20] погрешность измерения температуропроводности «свободных» образцов составила 2-3 %, а заплавленных — 4-6 %. Погрешности теплопроводности расплава и у-фазы практически совпадают с погрешностью температуропроводности, а для α и β -фазы это значение возрастает до 3–4 % из-за погрешности литературных данных по плотности и теплоемкости лантана, которые используются при пересчете a в λ .

Результаты и обсуждение

Результаты экспериментов по определению температуропроводности сплава La_{98.8} Fe_{1.2} представлены на рис. 2. Для каждой фазы результаты измерений аппроксимировались

3 — результаты аппроксимации.

полиномами. В температурном интервале 293-523 К использовался полином второй степени

$$a_{\alpha}(T) = 7,13 + 1,62 \cdot 10^{-2} \cdot T - 1,603 \cdot 10^{-5} \cdot T^{2}, \tag{1}$$

здесь и везде далее T — температура, К; a — температуропроводность, 10^{-6} м²/с. Среднеквадратичное отклонение экспериментальных точек от уравнения (1) не превосходит 0,75 %. В интервале 523–1122 К наилучшие результаты аппроксимации также были получены при использовании полинома второй степени

$$a_{R}(T) = 10 + 5,67 \cdot 10^{-3} \cdot T - 3,98 \cdot 10^{-6} \cdot T^{2}.$$
 (2)

Среднеквадратичное отклонение экспериментальных точек от аппроксимации составило менее 1,1 %.

В узкой температурной области, соответствующей у-фазе (1122–1162 К), и в области жидкого состояния температуропроводность хорошо аппроксимировалась линейной зависимостью

$$a_{\gamma}(T) = 18,72 - 6,1 \cdot 10^{-3} \cdot T, \tag{3}$$

$$a_m(T) = 1,23 + 8,83 \cdot 10^{-3} \cdot T.$$
⁽⁴⁾

Среднеквадратичное отклонение экспериментальных точек от аппроксимаций (3) и (4) не превышало 0,65 и 0,70 % соответственно.

На рис. 1 приведено сопоставление результатов, полученных в настоящей работе, с данными других исследований по температуропроводности лантана. Поскольку в большинстве известных авторам экспериментах применялись нестационарные методы измерений, а измеряемой величиной являлась температуропроводность (a), то сравнение проводилось именно по ней. Для работ [1-4] результаты пересчитывались из данных о теплопроводности с помощью известных данных по плотности [19] и теплоемкости [21]. Эти же данные по плотности и теплоемкости использовались в настоящей работе при определении температуропроводности и теплопроводности в опытах с заплавленным образцом. На рисунке видно, что в области, соответствующей твердому состоянию, результаты, полученные авторами для сплава, несколько ниже большинства данных, полученных для чистого лантана. В интервале существования α -фазы результаты представленной работы практически совпадают с результатами работы [3] для загрязненного образца и согласуются с данными исследований [1, 2, 5] в пределах суммарных погрешностей измерений. Для чистого образца результаты [3] показывают заметно более высокие значения по сравнению с настоящими данными. Данные работы [4], по-видимому, следует исключить из рассмотрения, они значительно превышают не только результаты остальных измерений коэффициентов переноса тепла лантана, но и других лантаноидов. Для β -фазы результаты, полученные авторами, хорошо совпали с данными [11], однако оказались значительно ниже результатов, представленных в [4-7]. Для у-фазы результаты настоящих измерений оказались между значениями, приведенными в исследовании [11], и «облаком» данных работы [8].

В области жидкого состояния полученные авторами результаты в пределах суммарных погрешностей измерений совпадают со всеми известными экспериментальными данными [9–11]. Хорошее согласование результатов для расплава указывает на более слабое влияние примесей на коэффициенты переноса тепла в жидкой структуре без дальнего порядка, чем на рассеяние фононов и электронов в упорядоченном твердом теле.

Рассчитанная по уравнениям (1)-(4) температуропроводность сплава La_{98.8}Fe_{1.2} во всем интервале измерений вместе с литературными данными для плотности [19] и теплоемкости [21], а также рассчитанные на их основе данные по теплопроводности приведены в таблице.

Таблица

Фаза	<i>Т</i> , К	$a \cdot 10^6$, m ² /c	λ , Bt/(M·K)	<i>ρ</i> , кг/м ³	<i>С_P</i> ·10 ³ , Дж/(г·К)
α	300	10,55	12,66	6144,3	0,195
	400	11,05	13,35	6134,4	0,197
	500	11,22	13,66	6124,4	0,199
	523	11,22	13,66	6122,1	0,199
β	523	11,88	14,06	6148,5	0,193
	600	11,97	14,66	6135,9	0,200
	700	12,02	15,39	6117,8	0,209
	800	11,99	16,01	6097,8	0,219
	900	11,88	16,50	6076,0	0,229
	1000	11,69	16,86	6052,4	0,238
	1100	11,42	17,10	6026,9	0,248
	1122	11,35	17,12	6021,0	0,251
γ	1122	11,88	20,25	5991,4	0,285
	1162	11,63	19,80	5979,4	0,285
Жидкость	1162	11,49	16,90	5954,0	0,247
	1200	11,83	17,35	5940,3	0,247
	1300	12,71	18,53	5904,2	0,247
	1400	13,59	19,70	5868,1	0,247
	1500	14,48	20,85	5832,1	0,247
	1600	15,36	21,99	5796,0	0,247
	1700	16,24	23,11	5759,9	0,247

Рекомендованные значения теплофизических свойств сплава La_{98.8}Fe_{1.2} в температурном интервале 300–1700 К

Заключение

Впервые получены экспериментальные данные по теплопроводности и температуропроводности сплава La_{98.8}Fe_{1.2} в конденсированном состоянии. Подробно исследованы области фазовых переходов, в том числе недостаточно изученная для чистого лантана область существования *ү*-фазы. Показано, что при плавлении сплава практически отсутствует скачок температуропроводности. Отсутствие существенного изменения температуропроводности при плавлении подтверждает высокую степень разупорядоченности высокотемпературной *ү*-фазы. Также показано, что наличие примеси железа, по-видимому, приводит к заметному снижению коэффициентов переноса тепла в твердом лантане, однако слабо влияет на температуропроводность в жидком состоянии.

Список литературы

- 1. Jolliffe B.W., Tye R.P., Powell R.W. The thermal and electrical conductivities of scandium, yttrium and manganese and twelve rare-earth metals, at normal temperature // J. the Less-Common Metals. 1966. Vol. II. P. 388–394.
- Spedding F.H., Legvold S. Quarterly summary research report in physics for April, May and June 1954 by Ames Laboratory Staff: ISC-50S. Ames Laboratory at Iowa State College: Ames Laboratory at Iowa State College, 1954. P. 1–17.
- 3. Голубков А.В., Девяткова Е.Д., Жузе В.П., Сергеева В.М., Смирнов И.А. Теплопроводность лантана и его монохалькогенидов // Физика твердого тела. 1966. Т. 8, № 6. С. 1761–1771.
- 4. Смирнов И.А., Хуснутдинова В.Я. Теплопроводность лантана в области первого фазового перехода // Физика твердого тела. 1973. Т. 15, № 3. С. 923–925.
- 5. Сафонов А.Н. Температуропроводность и теплоемкость легких редкоземельных металлов при высоких температурах: дис. ... канд. физ.-мат. наук. Специальность 01.04.14. Свердловск: Свердловский ордена Трудового Красного Знамени горный ин-т им. В.В. Вахрушева, 1990. 172 р.
- 6. Зиновьев В.Е., Гельд П.В., Морозова В.А., Чуприков Г.Е. Кинетические свойства β-ланатана // Физика твердого тела. 1973. № 7. С. 2241–2244.
- 7. Куриченко А.А., Ивлиев А.Д., Зиновьев В.Е. Исследование теплофизических свойств редкоземельных металлов с использованием модулированного лазерного излучения // Теплофизика высоких температур. 1986. Т. 24, № 3. С. 493–499.

- 8. Kurichenko A.A., Ivliev A.D., Zinoviev V.E. Thermal and kinetic properties of light rare earth metals near high temperature structural transition points // Solid State Communications. 1985. Vol. 56, No. 12. P. 1065–1068.
- 9. Мардыкин И.П., Кашин В.И., Сбитнев П.П. Тепловые свойства лантана в твердом и жидком состояниях // Изв. АН СССР. 1973. № 6. С. 77–80.
- 10. Банчилла С.Н., Филиппов Л.П. Экспериментальное изучение комплекса тепловых свойств некоторых редкоземельных металлов при высоких температурах // Инж.-физич. журнал. 1974. Т. 27, № 1. С. 68–71.
- Wittenberg L.J. Thermal diffusivities of lanthanum, cerium and plutonium at high temperatures // Thermochimica Acta. 1973. Vol. 7, No. 1. P. 13–23.
- [Электронный pecypc] https://www.netzsch-thermal-analysis.com/en/products-solutions/thermal-diffusivity-conductivity/lfa-427/.
- Samoshkin D.A., Savchenko I.V., Stankus S.V., Agazhanov A.Sh. Thermal diffusivity and thermal conductivity of neodymium in the temperature range 293 to 1773 K // J. Engin. Thermophys. 2018. Vol. 27, No. 4. P. 399–404.
- 14. Samoshkin D.A., Savchenko I.V., Stankus S.V., Agazhanov A.Sh. Thermal conductivity and thermal diffusivity of samarium in the temperature range of 293–1773 K // Thermophys. Aeromech. 2018. Vol. 25, No. 5. P. 735–740.
- Samoshkin D.A., Agazhanov A.Sh., Savchenko I.V., Stankus S.V. Thermal diffusivity of gadolinium in the temperature range of 287–1277 K // High Temperature. 2017. Vol. 55, No. 2. P. 221–225.
- 16. Самошкин Д.А., Агажанов А.Ш., Савченко И.В., Станкус С.В., Яцук О.С. Температуропроводность диспрозия в интервале температур 293–1273 К // Перспективные материалы. 2016. № 10. С. 76–80.
- Cape J.A., Lehman G.W. Temperature and finite pulse time effects in the flash method for measuring thermal diffusivity // J. Applied Physics. 1963. Vol. 34, No. 7. P. 1909–1913.
- Blumm J., Opfermann J. Improvement of the mathematical modeling of flash measurements // High Temperatures — High Pressures. 2002. Vol. 34, No. 5. P. 515–521.
- Stankus S.V., Khairulin R.A. Thermal properties of lanthanoides in liquid and solid states // J. Engng Thermophysics. 1991. Vol. 1, No. 3. P. 193–210.
- 20. Станкус С.В., Савченко И.В. Измерение коэффициентов переноса тепла жидких металлов методом лазерной вспышки // Теплофизика и аэромеханика. 2009. Т. 16, № 4. С. 625–632.
- Hultgren R., Desai R.D., Hawkins D.T. Selected values of thermodynamic properties of elements. Ohio: Amer. Soc. Metals, 1973. 636 p.

Статья поступила в редакцию 29 марта 2019г., после доработки — 23 апреля 2019 г., принята к публикации 26 апреля 2019 г.