УДК 532.526.3

Расчет устойчивости ламинарного пограничного слоя на поверхности профилированного гиперзвукового сопла для числа Maxa M = 6^{*}

С.О. Морозов^{1,2}, А.Н. Шиплюк^{1,3}

¹Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

²Новосибирский государственный университет

³Новосибирский государственный технический университет

E-mail: morozov@itam.nsc.ru

Выполнен расчет устойчивости ламинарного пограничного слоя на поверхности гиперзвукового сопла для числа Маха M = 6 аэродинамической установки Транзит-М. Профили ламинарного пограничного слоя получены путем численного решения уравнений Навье–Стокса в программе Fluent пакета Ansys. В приближении линейной теории устойчивости получены N-факторы роста вихрей Гёртлера, возмущений первой и второй мод Мэка. Показано, что для рассматриваемого сопла наиболее неустойчивыми являются вихри Гёртлера. Определены эмпирические зависимости локального числа Рейнольдса ламинарно-турбулентного перехода от N-фактора и единичного числа Рейнольдса.

Ключевые слова: гиперзвуковое сопло, пограничный слой, линейная теория устойчивости, ламинарнотурбулентный переход, вихри Гёртлера.

Введение

Проведение экспериментальных исследований устойчивости и ламинарно-турбулентного перехода гиперзвукового пограничного слоя необходимо для понимания фундаментальных причин возникновения перехода, а также для построения и валидации теоретических или численных моделей. В потоке, создаваемом обычной гиперзвуковой аэродинамической трубой, уровень пульсаций значительно выше, чем в условиях гиперзвукового полета в атмосфере, поэтому процессы, приводящие к ламинарно-турбулентному переходу, в этих двух случаях могут отличаться [1]. Наличие высокого уровня пульсаций в потоке затрудняет или делает невозможным верификацию экспериментальными результатами данных, полученных теоретически или численно. Таким образом, снижение уровня пульсаций в потоке гиперзвуковой аэродинамической трубы является актуальной задачей [1].

^{*} Работа выполнена при финансовой поддержке РФФИ в рамках научного проекта № 19-08-00794.

[©] Морозов С.О., Шиплюк А.Н., 2020

Морозов С.О., Шиплюк А.Н.

Малошумным принято считать поток, в котором уровень пульсаций статического давления не превышает 0,1 %. В настоящее время существуют четыре малошумные гиперзвуковые аэродинамические трубы: Boeing/AFOSR Mach-6 Quiet-Flow Ludwieg Tube (BAM6QT) at Purdue University (USA) [2], The Mach 6 Quiet Tunnel (M6QT) at Texas A&M National Aerothermochemistry Laboratory (USA) [3], Mach 6 hypersonic quiet tunnel at Peking University (China) [4], Mach 6 hypersonic quiet tunnel at NUDT [5], ведется разработка пятой установки — Notre Dame Mach 6 quiet tunnel [6]. Возмушения в потоке появляются из-за конструктивных особенностей (наличия дросселей, стыков деталей, измерительных приборов и др.) и турбулентного пограничного слоя, возникающего на стенках сопла [7]. Для подавления возмущений в форкамере перед дозвуковой частью сопла устанавливается набор сеток с различной степенью проницаемости. Турбулентный пограничный слой на стенках гиперзвукового сопла излучает в поток акустические волны Маха, возникающие на турбулентных вихрях. В малошумных гиперзвуковых аэродинамических трубах ВАМ6QT и М6QT перед критическим сечением сопла производится слив пограничного слоя, и вниз по потоку начинает развиваться новый пограничный слой. Для того чтобы достичь уровня пульсаций ниже 0,1 %, необходимо, чтобы пограничный слой на сверхзвуковой части сопла оставался полностью ламинарным [7]. В работах [8, 9] проводились исследования влияния отсоса пограничного слоя в сверхзвуковой части сопла и было показано, что шероховатость поверхности и неравномерность отсоса приводят к возникновению возмущений. Реализовать полностью ламинарный пограничный слой удалось за счет полировки стенок и специально разработанного профиля сопла [7]. При быстро расширяющемся профиле сопла ламинарно-турбулентный переход реализуется из-за неустойчивых вихрей Гёртлера. При медленно расширяющемся профиле доминируют возмущения Толлмина-Шлихтинга и переход располагается ниже по потоку от горла, но при этом длина сопла значительно увеличивается, что усложняет производство высокоточного контура. Исходя из этого профиль рассчитывается так, чтобы и вихри Гёртлера и возмущения Толлмина-Шлихтинга вызывали ламинарно-турбулентный переход пограничного слоя ниже по потоку от начала области равномерного потока в сопле [10]. Положение перехода зависит также от единичного числа Рейнольдса набегающего потока, поэтому существующие малошумные аэродинамические трубы работают при умеренных единичных числах Рейнольдса. Ограничения по числу Рейнольдса и геометрическому размеру модели, на которой исследуется гиперзвуковой пограничный слой, не позволяют наблюдать естественный переход от ламинарного к турбулентному пограничному слою. На сегодняшний день задачи уменьшения протяженности сопла и увеличения единичного числа Рейнольдса при неизменном или более низком уровне возмущений в набегающем потоке являются актуальными. Это обуславливает необходимость создания оптимизационных алгоритмов для расчета контура гиперзвукового сопла и изучения возможных активных или пассивных методов стабилизации возмущений в пограничном слое сопла для задержки ламинарнотурбулентного перехода.

В настоящей работе представлены результаты исследования устойчивости пограничного слоя на поверхности профилированного сопла аэродинамической трубы кратковременного действия Транзит-М, рассчитанного на число Маха M = 6. С использованием этого сопла был получен ряд важных экспериментальных данных по устойчивости, ламинарно-турбулентному переходу и управлению устойчивостью гиперзвуковых пограничных слоев (см., например, работы [11–14]). В работе [15] было показано, что в диапазоне единичных чисел Рейнольдса $\text{Re}_{1\infty} = (4-24) \cdot 10^6 \text{ м}^{-1}$ на выходе из сопла уровень пульсаций давления составляет менее 3 %, а уровень пульсаций теплового потока менее 8 %. Таким образом, исследование причин возникновения и методов снижения высокого уровня пульсаций потока для рассматриваемого сопла является актуальным.

· () .: 0 · .

Методика расчета положения ламинарно-турбулентного перехода

Для определения положения ламинарно-турбулентного перехода в рассматриваемой работе используется е^N-метод в рамках линейной теории устойчивости пограничного слоя относительно малых возмущений. Линейная теория устойчивости предполагает медленное изменение параметров потока вдоль поверхности (в сравнении с нормальным направлением), поэтому параметры потока с возмущениями в уравнениях движения идеального газа можно выразить следующим образом:

$$A(t, x, y, z) = a(x, y, z) + a'(t, x, y, z) = a(x, y, z) + a'(y)e^{ia(x)x + i\beta z - iwt},$$
(1)

где A — параметр потока, a — параметр стационарного невозмущенного потока, a' — амплитуда малого нестационарного возмущения, координата x — направлена по потоку параллельно поверхности, координата y — нормаль к поверхности, координата z направлена перпендикулярно потоку параллельно поверхности, α , β — волновые числа, ω — частота. Для двумерных поверхностей параметры пограничного слоя вдоль z постоянны, поэтому β является реальным числом, а волновое число в направлении потока может иметь мнимую часть: $\alpha = \alpha_r + i\alpha_i$. Так, при $\alpha_i > 0$ — возмущение устойчиво, а при $\alpha_i < 0$ — неустойчиво.

 e^{N} -метод основан на предположении о том, что начало ламинарно-турбулентного перехода определяется по месту, где малое возмущение с начальной амплитудой a'_{0} достигает определенного уровня a'_{tr} :

$$a'_{\rm tr} = a'_0 {\rm e}^{N_{\rm tr}}, \qquad (2)$$

$$N_{\rm tr} = \int_{x_{\rm cr}}^{x_{\rm tr}} -a_{\rm i}(x)dx,\tag{3}$$

где $x_{\rm cr}$ — начало области неустойчивости течения, $x_{\rm tr}$ — начало ламинарно-турбулентного перехода, $N_{\rm tr}$ — фактор перехода. Для определения $N_{\rm tr}$ необходимо рассчитать параметры ламинарного пограничного слоя, а затем для полученных профилей пограничного слоя вычислить коэффициенты нарастающих возмущений $-i\alpha_i$.

Метод расчета невозмущенного ламинарного пограничного слоя

В представленном исследовании профили ламинарного пограничного слоя рассчитывались с помощью программы Fluent из пакета Ansys. Расчет проводился для сопла гиперзвуковой аэродинамической трубы кратковременного действия Транзит-М. Сопло рассчитано на число Maxa M = 6 с выходным диаметром 0,3 м и длиной 1,46 м. Контуры числа Maxa показаны на рис. 1.

Вычисления выполнялись в осесимметричной постановке с ламинарной вязкостью. Рабочим газом являлся воздух. Зависимость вязкости от температуры определялась по закону Сазерленда, теплопроводность определялась в рамках молекулярно-кинетичес-кой теории. На входе в сужающуюся часть сопла ставилось граничное условие «pressure inlet»: $P_0 = 0,35, 0,817, 1,5, 2,65$ и 3,75 МПа, $T_0 = 380$ К; на выходе ставилось условие истечения в вакуум «pressure outlet»: P = 0. Температура стенки сопла $T_w = 295$ К. Единичное число Рейнольдса на выходе сопла $\text{Re}_{1\infty} = (4,6, 10,6, 19,4, 34,14$ и 48,1)·10⁶ м⁻¹.

Морозов С.О., Шиплюк А.Н.

Для расчета использовалась структурированная сетка со сгущением ячеек к поверхности сопла и критическому сечению (x = 0). Поверхность сопла была разделена на 1500 ячеек с самой маленькой ячейкой в критическом сечении, равной 0,1 мм, и самой большой на выходе, равной 3,5 мм. Количество ячеек по вертикали составляло 200, самая маленькая

ячейка имела размер 0,01 мм. Ячейки располагались ортогонально поверхности, для того чтобы вести расчет устойчивости в локальной системе координат, ориентированной по поверхности сопла. Увеличение количества ячеек в три раза привело к изменению профилей пограничного слоя не более чем на 0,5 %, поэтому расчеты велись для описанной выше сетки, состоящей из 1500×200 ячеек.

Рисунок 2 иллюстрирует изменение единичного числа Рейнольдса и числа Маха вдоль оси сопла для $\text{Re}_{1\infty} = 19,4\cdot10^6 \text{ m}^{-1}$. Видно, что к выходу сопла числа Маха и Рейнольдса принимают постоянные значения. На рис. За приведены профили единичного числа Рейнольдса и числа Маха на выходе из сопла при x = 1,450 м для $\text{Re}_{1\infty} = 19,4\cdot10^6 \text{ m}^{-1}$. Получено, что максимальное отклонение в ядре потока по числу Re_1 составляет 2,9 % и по числу Маха — 1,3 %. Максимальный угол наклона вектора скорости на выходе из сопла не превышает 0,01° (рис. 3b). Таким образом, показано, что поток на выходе из данного сопла является равномерным.

Метод расчета устойчивости ламинарного пограничного слоя

Для пограничного слоя на поверхности профилированного гиперзвукового сопла характерны нарастающие возмущения типа вихрей Гёртлера, волн Толлмина–Шлихтинга (возмущений первой моды Мэка) и высокочастотных акустических возмущений (возмущений второй моды Мэка). Расчет устойчивости проводился в локальном линейном приближении с помощью метода коллокаций, как и в работах [16, 17]. На стенке

Рис. 3. Профили единичного числа Рейнольдса и числа Маха (*a*) и угол наклона вектора скорости (*b*) на выходе из сопла при x = 1,450 м для $\text{Re}_{1\infty} = 19,4\cdot 10^6$ м⁻¹.

и на верхней границе расчетной области задавалось равенство нулю амплитуды возмущений. Профили пограничного слоя интерполировались на узлы сетки, которые определялись на интервале $0 \le y \le y_{max}$ как

$$k = \cos(\pi j/L), \ j = 0, 1, \dots L,$$
 (4)

$$y = C_1 \frac{1+k}{C_2 - k},$$
 (5)

где L — общее количество ячеек, $C_1 = y_{\delta}y_{max}/(y_{max} - 2y_{\delta})$, $C_2 = 1 + 2C_1/y_{max}$, y_{δ} — граница пограничного слоя. В результате такого определения узлов половина от общего числа ячеек находится внутри пограничного слоя [17]. В данном исследовании выбрано L = 200как наиболее оптимальное. Вдоль поверхности сопла шаг расчета составил dx = 0,01 м.

Для расчета характеристик волн Толлмина–Шлихтинга (возмущений первой моды Мэка) и высокочастотных акустических возмущений (возмущений второй моды Мэка) использовалась система уравнений, описанная в работе [16]. Собственные значения ($\alpha(x)$) и собственные функции (a'(y)) находились для заданных размерных значений поперечного волнового числа β и частоты ω возмущения.

Для валидации программного кода, используемого в настоящем исследовании, был проведен расчет устойчивости пограничного слоя на пластине при числе Маха M = 2, как в работе [18]. В данном случае наиболее неустойчивыми являются наклонные возмущения первой моды Мэка. На рис. 4 показано сравнение зависимостей степеней нарастания первой моды возмущений от частоты возмущений. Получено хорошее количественное согласование. Отличие в расчетных амплитудах степени роста связано с различными методами расчета основного течения, а так же с тем, что в работе [18] фиксировался угол наклона волнового вектора, а не размерное поперечное число β , как в рассматриваемом случае.

На рис. 5 показаны собственные функции возмущений первой и второй мод на профилированном сопле M = 6 при x = 1,2 м для $\text{Re}_{1\infty} = 19,4\cdot10^6$ м⁻¹. Как видно, собственная функция первой моды возмущений (рис. 5*a*) достаточно медленно затухает от границы пограничного слоя ($\delta = 0,005$ м). Для того чтобы удовлетворялось условие равенства нулю амплитуды возмущений на верхней границе, высота области задавалась как $y_{\text{max}} = 20\cdot\delta$.

Рис. 4. Зависимость степени роста возмущений первой моды Мэка от частоты возмущения. Данные работы [18]: *1* — сплошная поверхность, *2* — проницаемая поверхность,

3 — проницаемая поверхность и вдув тяжелого газа SF₆, 4 — результаты настоящей работы.

Рис. 5. Собственные функции первой моды для f = 10 кГц, $\beta = 300$ рад/м (*a*) и второй моды для f = 80 кГц, $\beta = 0$ (*b*) в точке x = 1,2 м для $\text{Re}_{1\infty} = 19,4 \cdot 10^6 \cdot \text{м}^{-1}$. 1 - p, 2 - u, 3 - w.

Расчет линейного развития неустойчивости Гёртлера проводился с помощью уравнений, описанных в исследовании [19]. В работе [20] было показано, что степени нарастания стационарных вихрей Гёртлера больше, чем нестационарных, поэтому собственные значения и собственные функции возмущений находились для заданных значений поперечного числа β , которое определялось по количеству вихрей на длину окружности сопла:

$$\beta(x) = \frac{2\pi}{\lambda(x)} = \frac{n}{r(x)},\tag{6}$$

$$\lambda(x) = \frac{2\pi r(x)}{n},\tag{7}$$

где λ — длина волны возмущения поперек потока, r — радиус сопла, n — фиксированное число вихрей.

Для валидации рассматриваемого программного кода использовались результаты расчета неустойчивости Гёртлера на пластине при числе Маха M = 3,5 из работы [19]. На рис. 6 показано сравнение степеней нарастания для числа Гёртлера $G_L = 50$ в зависимости от β_{Bl} , здесь β_{Bl} — поперечное волновое число, обезразмеренное на локальный параметр Блазиуса, поэтому при постоянном размерном волновом числе безразмерное меняется вдоль пластины. Видно, что максимальное отклонение составляет 10 % при

максимальном $\beta_{\rm Bl}$, возможно это связанно с разностью расчета основного течения.

25 20 Степень роста 15 O٨ <u>م</u> 10 8 9 5 o^{ddda} 01 $\Delta 2$ 0 0,4 0,6 0,8 1,0 1,2 1,4 $\beta_{\rm Bl}$ 0,2

На рис. 7*a* показано изменение числа Гёртлера, определенного по толщине вытеснения пограничного слоя (δ^*), вдоль оси сопла для Re_{1∞} = 19,4·10⁶ м⁻¹:

$$G_{\delta^*} = \frac{U_e \rho_e \delta^*}{\mu_e} \sqrt{\frac{\delta^*}{R}},$$
 (8)

Рис. 6. Зависимость степени роста вихрей Гёртлера от поперечного волнового числа β_{Bl}.

данные работы [19],
 результаты настоящей работы.

где U_e , ρ_e , μ_e — скорость, плотность и вязкость на границе пограничного слоя, R — радиус кривизны поверхности сопла. В уравнениях, приведенных в [19], нормальная и трансверсальная координаты нормированы на $L/\text{Re}^{0,5}$, где Re — число Рейнольдса по произвольному масштабу L, поэтому число Гёртлера в данном случае определено как

$$G_L = 2\sqrt{\frac{U_e \rho_e L}{\mu_e}} \cdot \frac{L}{R},$$
(9)

где L = 0,3 м — характерная длина. На рис. 7*b* показана зависимость числа Гёртлера G_L вдоль оси сопла для $\text{Re}_{1\infty} = 19,4\cdot 10^6 \text{ M}^{-1}$.

На рис. 8 показаны собственные функции вихрей Гёртлера на профилированном сопле M = 6 в точке x = 1,2 м для $\text{Re}_{1\infty} = 19,4\cdot10^6 \text{ m}^{-1}$. Здесь максимальные амплитуды для вихрей Гёртлера расположены около границы пограничного слоя, что характерно для гиперзвуковых течений. Для вихрей Гёртлера, как и для возмущений первой моды Мэка, высота расчетной области определялась как $y_{\text{max}} = 20\cdot\delta$.

Устойчивость ламинарного пограничного слоя на профилированном сопле

В результате расчетов устойчивости пограничного слоя на профилированном сопле, рассчитанном на число Маха M = 6, получены *N*-факторы нарастания возмущений первой и второй мод и вихрей Гёртлера для единичных чисел Рейнольдса на выходе сопла $\text{Re}_{1\infty} = (4,6, 10,6, 19,4, 34,14 \text{ и})$

48,1)·10⁶ м⁻¹. *N*-фактор рассчитывался только в области неустойчивости возмущений. На рис. 9 показана зависимость максимального *N*-фактора возмущений вдоль поверхности сопла для единичных чисел

Рис. 9. N-фактор возмущений
вдоль поверхности сопла.
$\operatorname{Re}_{1\infty} = 48, 1 \cdot 10^6 \text{ м}^{-1}$: <i>1</i> — вихри Гёртлера,
2 — первая мода, 3 — вторая мода;
$\text{Re}_{1\infty} = 19,4 \cdot 10^6 \text{ м}^{-1}$: 4 — вихри Гёртлера,
5 — первая мода, 6 — вторая мода.

Рейнольдса на выходе сопла $\text{Re}_{1\infty} = 19,4\cdot10^6 \text{ м}^{-1}$ и $\text{Re}_{1\infty} = 48,1\cdot10^6 \text{ м}^{-1}$. *N*-фактор вихрей Гёртлера растет гораздо быстрее, чем для возмущений первой и второй мод Мэка. Максимальное значение *N*-фактора достигается в конце сопла и состав-

ляет $N_{\text{max}} = 15,6$ и $N_{\text{max}} = 20,9$ для $\text{Re}_1 = 19,4\cdot10^6$ и $\text{Re}_1 = 48,1\cdot10^6 \text{ m}^{-1}$ соответственно. Вторыми по скорости нарастания являются возмущения первой моды Мэка. Для $\text{Re}_{1\infty} = 19,4\cdot10^6 \text{ m}^{-1}$ характерны частоты $f = 15 \div 25 \text{ к}\Gamma \text{ µ}$, для $\text{Re}_{1\infty} = 48,1\cdot10^6 \text{ m}^{-1}$ — $f = 25 \div 30 \text{ к}\Gamma \text{ µ}$. Угол наклона волнового вектора данных возмущений меняется вниз по потоку и лежит в пределах от 55° до 85° для исследуемых параметров потока. Рост *N*-фактора возмущений начинается от $x \approx 0,2$ м и достигает максимального значения на выходе из сопла $N_{\text{max}} = 5,3$ и 8,9 для $\text{Re}_{1\infty} = 19,4\cdot10^6 \text{ u} 48,1\cdot10^6 \text{ m}^{-1}$ соответственно. Неустойчивость второй моды возмущений характерна для гиперзвукового потока, поэтому заметный рост *N*-фактора начинается там, где поток разгоняется до M > 5. На исследуемом сопле M > 5 при x > 0,4 м. Наиболее нарастающие возмущения второй моды наблюдаются в частотных в диапазонах f = 70–200 кГц и f = 120–320 кГц для $\text{Re}_{1\infty} = 19,4\cdot10^6 \text{ m}^{-1}$ и $\text{Re}_{1\infty} = 48,1\cdot10^6 \text{ m}^{-1}$ соответственно. Видно, что *N*-фактор второй моды возмущений достигает максимального значения в конце сопла: $N_{\text{max}} = 2,5$ ($f = 75 \text{ к}\Gamma$ ц) и $N_{\text{max}} = 4$ ($f = 120 \text{ к}\Gamma$ ц) для $\text{Re}_{1\infty} = 19,4\cdot10^6 \text{ m}^{-1}$ и $\text{Re}_{1\infty} = 48,1\cdot10^6 \text{ m}^{-1}$ соответственно.

Ламинарно-турбулентный переход при линейном развитии возмущений в пограничном слое начинается при достижении возмущениями определенного уровня амплитуды. *N*-фактор показывает во сколько раз выросло возмущение относительно начального значения, которое определяется задачей восприимчивости пограничного слоя к внешним возмущениям. К внешним возмущениям в сопле гиперзвуковой трубы относятся пульсации потока, попадающие из дозвуковой части сопла (от стыков форкамеры, клапанов, дросселей и пр.), и шероховатость поверхности сверхзвуковой части сопла. Для установки Транзит-М и данного профилированного гиперзвукового сопла N-фактор, при котором начинается ламинарно-турбулентный переход, неизвестен. Его определение планируется в будущих экспериментальных исследованиях. В рассматриваемой работе предполагалось определить зависимость положения начала ламинарно-турбулентного перехода (*x*_{tr}) пограничного слоя от единичного числа Рейнольдса на выходе из сопла при фиксированном значении *N*-фактора перехода (*N*_{tr}). На рис. 10*a* представлена зависимость начала перехода (x_{tr}) от единичного числа Рейнольдса ($\text{Re}_{1\infty}$) для $N_{tr} = 4, 6, 8$ и 12 вихрей Гёртлера. Видно, что зависимость x_{tr} от Re₁ для всех значений N_{tr} является нелинейной. На рис. 10b символами представлена зависимость локального числа Рейнольдса перехода (Re_{tr}) от единичного числа Рейнольдса на выходе из сопла $\text{Re}_{1\infty}$ для N_{tr} = 4, 6 и 8 вихрей Гёртлера. Локальное число Рейнольдса перехода определялось по формуле

$$\operatorname{Re}_{\operatorname{tr}} = \operatorname{Re}_{\operatorname{1tr}} \cdot x_{\operatorname{tr}},\tag{10}$$

Рис. 10. Зависимость координаты (*a*) и локального числа Рейнольдса (*b*) начала ламинарно-турбулентного перехода от единичного числа Рейнольдса на выходе из сопла для различных значений *N*-фактора вихрей Гёртлера. *N* = 4 (*1*), 6 (*2*), 8 (*3*), 10 (*4*), 12 (*5*).

Рис. 11. Зависимость локального числа Рейнольдса начала ламинарно-турбулентного перехода от единичного числа Рейнольдса на выходе из сопла для различных значений *N*-фактора возмущений первой моды Мэка. N = 4 (1), 6 (2).

где x_{tr} — координата сопла, где достигается *N*-фактор перехода, Re_{1tr} — единичное число Рейнольдса на границе пограничного слоя в точке x_{tr} . По получен-

ным данным была проведена аппроксимация зависимости локального Рейнольдса перехода Re_{tr} от единичного числа Рейнольдса на выходе сопла Re₁[∞] и *N*-фактора:

$$\operatorname{Re}_{\mathrm{tr}} = -(2,27\pm0,75)\cdot10^{3} + (0,5668\pm0,002)\operatorname{Re}_{1\infty} - (1,789\pm0,281)\cdot10^{4}N + (9,413\pm0,35)\cdot10^{-3}\operatorname{Re}_{1\infty}N + (3,381\pm0,26)\cdot10^{4}N^{2}$$
(11)

для $\text{Re}_{1\infty} = 4,6-48,1 \text{ м}^{-1}$ и N = 1-9. Коэффициенты определены для доверительного интервала 95 %. Коэффициент детерминации $R^2 = 0,998$. Аппроксимация для различных значений *N*-фактора перехода показана на рис. 10*b*.

На рис. 11 представлена зависимость локального числа Рейнольдса перехода Re_{tr} от единичного числа Рейнольдса на выходе из сопла $Re_{1\infty}$ для первой моды возмущений. Для $N_{tr} = 4$ можно сделать вывод, что зависимость Re_{tr} от $Re_{1\infty}$ линейна, соответствующие линия и уравнение показаны на рисунке. Для $N_{tr} = 6$ проведена аппроксимирующая линия по двум точкам.

Заключение

Проведено численное исследование устойчивости пограничного слоя на поверхности гиперзвукового профилированного сопла в рамках линейной теории устойчивости. Расчет выполнен для сопла аэродинамической установки Транзит-М ИТПМ СО РАН, рассчитанного на число Маха 6. Показано, что для этого сопла наиболее неустойчивыми являются вихри Гёртлера для единичных чисел Рейнольдса на выходе сопла в диапазоне $\operatorname{Re}_{1\infty} = (4,6-48,1) \cdot 10^6 \text{ м}^{-1}$. По *N*-факторам роста возмущений определено положение начала ламинарно-турбулентного перехода на сопле в предположении, что переход наступает при заданном значении *N*-фактора. Показано, что для вихрей Гёртлера и возмущений первой моды локальное число Рейнольдса перехода линейно зависит от единичного числа Рейнольдса для различных *N*-факторов. Для возмущений первой моды Мэка и вихрей Гёртлера получены эмпирические зависимости локального числа Рейнольдса перехода от *N*-фактора перехода и единичного числа Рейнольдса на выходе гиперзвукового сопла.

Список литературы

- 1. Schneider S.P. Developing mechanism-based methods for estimating hypersonic boundary-layer transition in flight: the role of quiet tunnels // Progress in Aerospace Sci. 2015. Vol. 72. P. 17–29.
- Schneider S.P. Design and fabrication of a 9.5-inch Mach-6 quiet-flow ludwieg tube // 20th AIAA Advanced Measurement and Ground Testing Technology Conf. AIAA Paper. 1998. No. 1998–2511.
- **3. Hofferth J., Bowersox R., Saric W.** The Mach 6 quiet tunnel at texas A&M: quiet flow performance // 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conferences, Fluid Dynamics and Co-located Conf. AIAA Paper. 2010. No. 2010–4794.
- Zhang C.-H., Tang Q., Lee C.-B. Hypersonic boundary-layer transition on a flared cone // Acta Mechanica Sinica. 2013. Vol. 29, No. 1. P. 48–54.
- Gang D., Yi S., Lu X. Design and performance of a hypersonic quiet wind tunnel at NUDT // 21st AIAA Int. Space Planes and Hypersonics Technologies Conf. AIAA Paper. 2017. No. 2017–2305.
- Lakebrink M.T., Bowcutt K.G., Winfree T., Huffman C.C., Juliano T.J. Optimization of a Mach-6 quiet windtunnel nozzle // J. Spacecraft and Rockets. 2018. Vol. 55, No. 2. P. 315–321.
- Schneider S.P. Development of hypersonic quiet tunnels // J. Spacecraft and Rockets. 2008. Vol. 45, No. 4. P. 641–664.
- 8. Klebanoff P.S., Spangenberg W., Schubauer G.B. Investigation of boundary layer transition // Progress Report of National Bureau of Standards. 1961. NASA STI 62N10625.
- **9. Pfenninger W., Syberg J.** Reduction of acoustic disturbances in the test section of supersonic wind tunnels by laminarizing their nozzle and test section wall boundary layers by means of suction // NASA CR 2436. 1974.
- 10. Schneider S.P. Design of a Mach-6 quiet-flow wind-tunnel nozzle using the e^N-method for transition estimation // 36th AIAA Aerospace Sci. Meeting and Exhibit. AIAA Paper. 1998. No. 1998–547.
- Лукашевич С.В., Морозов С.О., Шиплюк А.Н. Экспериментальное исследование влияния пассивного пористого покрытия на возмущения в гиперзвуковом пограничном слое. 2. Влияние положения пористого покрытия // Прикл. механика и техн. физика. 2016. Т. 57, No. 5. C. 127–133.
- 12. Lukashevich S.V., Morozov S.O., Shiplyuk A.N. Passive porous coating effect on a hypersonic boundary layer on a sharp cone at small angle of attack // Experiments in Fluids. 2018. Vol. 59, No. 8. Article 130. P. 1–11.
- 13. Морозов С.О., Лукашевич СВ., Судаков В.Г., Шиплюк А.Н. Экспериментальное исследование влияния малых углов атаки и затупления носика конуса на стабилизацию гиперзвукового пограничного слоя пассивным пористым покрытием // Теплофизика и аэромеханика. 2018. Т. 25, No. 6. С. 825–833.
- 14. Бунтин Д.А., Громыко Ю.В., Кириловский С.В., Маслов А.А., Поплавская Т.В. Влияние температуры затупленной носовой части конуса на ламинарно-турбулентный переход в гиперзвуковых пограничных слоях // Теплофизика и аэромеханика. 2018. Т. 25, № 4. С. 505–518.
- 15. Громыко Ю.В., Поливанов П.А., Сидоренко А.А., Бунтин Д.А., Маслов А.А. Экспериментальное исследование естественного шума гиперзвуковой аэродинамической трубы «Транзит-М» // Теплофизика и аэромеханика. 2013. Т. 20, № 4. С. 491–504.
- Boiko A.V., Demyanko K.V., Nechepurenko Y.M. On computing the location of laminar-turbulent transition in compressible boundary layers // Russian J. Numerical Analysis and Mathematical Modelling. 2017. Vol. 32, No. 1. P. 1–12.
- Malik M.R. Numerical methods for hypersonic boundary layer stability // J. Computational Physics. 1990. Vol. 86, No. 2. P. 376–413.
- 18. Лысенко В.И., Смородский Б.В., Ермолаев Ю.Г., Косинов А.Д. Экспериментальное исследование влияния инжекции тяжелого газа в сверхзвуковой пограничный слой на его устойчивость // Теплофизика и аэромеханика. 2018. Т. 25, № 2. С. 191–198.
- Spall R.E., Malik M.R. Goertler vortices in supersonic and hypersonic boundary layers // Physics of Fluids A. 1989. Vol. 1, No. 11. P. 1822–1835.
- Boiko A.V., Ivanov A.V., Kachanov Y.S., Mischenko D.A. Steady and unsteady Goertler boundary-layer instability on concave wall // European J. Mechanics B/Fluids. 2010. Vol. 29, No. 2. P. 61–83.

Статья поступила в редакцию 22 мая 2019 г., после доработки — 15 июля 2019 г., принята к публикации 26 августа 2019 г.