УДК 665.7.032.56 DOI: 10.15372/KhUR2019191

Исследование состава *н*-гептанового и спиртобензольного экстрактов бурого угля для выделения биологически активных веществ

К. М. ШПАКОДРАЕВ¹, С. И. ЖЕРЕБЦОВ¹, З. Р. ИСМАГИЛОВ^{1,2}

¹Федеральный исследовательский центр угля и углехимии СО РАН, Кемерово (Россия)

²Институт катализа СО РАН, Новосибирск (Россия)

E-mail: shpakodraevkm@mail.ru

Аннотация

Исследован групповой и компонентный состав *н*-гептанового и спиртобензольного экстрактов битумов, полученных из бурого угля Тюльганского месторождения. Применение методов ¹³С ЯМР (CPMAS) и ИК-Фурье спектроскопии, хромато-масс-спектрометрии и жидкостной хроматографии позволило определить, что *н*-гептановый и спиртобензольный экстракты представлены аналогичными группами веществ: спиртов, фенолов, алканов, небольшого количества карбоновых кислот и ароматических соединений, сложных эфиров, непредельных углеводородов. Вещества данных групп по относительному содержанию в различной степени распределены в исследуемых экстрактах, с преобладанием веществ алифатического характера. В экстрактах идентифицирован ряд биологически активных веществ: тетра-, гекса-, октадекановые кислоты, бутилпарабен, ферругинол, эйкозан.

Ключевые слова: буроугольный битум, биологически активные вещества, компонентный состав

введение

Один из важных вопросов, решаемых в рамках проблемы комплексной переработки углей, – переработка бурых углей. Сегодня наиболее перспективным способом в этом отношении является экстракция битумов (горного воска). Битум и продукты его дальнейшей переработки востребованы на мировом рынке и используются в более чем 200 отраслях промышленности. Стоимость 1 т сырого горного воска на мировом рынке достигает 3000 евро, а при дальнейшей переработке его цена значительно возрастает [1–5].

Бурые угли отличаются высокой битуминозностью [6]. Выход и состав битумов при экстракции могут варьироваться в широких диапазонах в зависимости от исходного сырья, способа проведения экстракции, химической природы

© Шпакодраев К. М., Жеребцов С. И., Исмагилов З. Р., 2019

используемого органического растворителя и параметров проводимого процесса – температуры, давления, длительности процесса. Экстракция битумов растворителями с температурой кипения ниже температуры разложения органического вещества позволяет извлечь соединения в исходном виде, исключая их термическую деструкцию. Это ключевой фактор при исследовании органического состава и структуры бурых углей. В экстракционных битумах выделяют восковую и смоляную составляющую [7].

В битумах, экстрагируемых из бурых углей, особенно в смоляной части, которая на сегодня считается отходом, в значительных количествах присутствуют характерные для растительности терпеноиды, гопаны, стерины, некоторые витамины и другие биологически активные вещества (БАВ). Возможность извлечения БАВ в чистом виде или в виде узких фракций открывает перспективы для применения их в медицине, косметике, сельском хозяйстве и др. [7–9].

Данная работа продолжает цикл исследований битумов, экстрагированных из бурого угля Тюльганского месторождения Южно-Уральского бассейна [9], и посвящена более подробному изучению состава *n*-гептановой и спиртобензольной фракций битумов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

При последовательной экстракции по методу Грефе [6] из бурого угля Тюльганского месторождения Южно-Уральского бассейна получены *н*-гептановый (ЭНГ) и спиртобензольный (ЭСпб, этанол/бензол = 1 : 1) экстракты. Выход ЭНГ составил 1.2 %, ЭСпб – 2.6 %. Далее полученные экстракты были разделены на омыляемую и неомыляемую фракции [9]. В табл. 1 приведены данные технического и элементного анализа образцов исходного и дебитуминированного угля.

Полученные исходные экстракты и их омыляемые и неомыляемые фракции разделяли на более узкие фракции с применением метода жидкостной колоночной хроматографии (ЖХ), которая проводилась в стеклянных колонках диаметром 10 мм и длиной 500 мм, заполненных силикагелем с размером зерен 0.2–0.5 мм (ГОСТ 3956–76). Хроматографирование проводилось с последовательным применением элюентов: толуола, этилацетата, бутанола, этанола, смеси этанол/муравьиная кислота (1 : 1). Фракция, оставшаяся на силикагеле, после окончания элюирования вымывалась горячим бутанолом. Контроль выхода фракций осуществлялся по показателю преломления используемого элюента [10].

Состав исходных экстрактов и полученных фракций исследовался с привлечением методов ИК (FTIR), ¹³C-ЯМР (CPMAS) и хромато-массспектрометрии (XMC). Запись ИК-спектров проводилась на ИК-Фурье спектрофотометре "Инфралюм-ФТ 801" (Россия) при разрешении 4 см⁻¹ с накоплением 16 сканов в диапазоне 4000–550 см⁻¹ в сухом КВг.

Спектры ЯМР высокого разрешения в твердом теле регистрировали на приборе Bruker Physik AG WP-200 (Германия) на частоте 75 МГц с использованием стандартной методики кроссполяризации с подавлением сигналов протонов и вращением под магическим углом (СРМАS). Производилось накопление 1024 сканов при комнатной температуре. Химический сдвиг измерялся относительно сигнала тетраметилсилана.

Хромато-масс-спектрометрический анализ проводился на хроматографе Agilent 6890N (США) с масс-селективным детектором Agilent 5973: капиллярная колонка HP-5ms; температура испарителя 290 °C; удаление растворителя 4 мин; деление потока 50 : 1; скорость газа-носителя гелия 1 мл/мин; объем пробы для анализа 5.0 мкл; программируемое повышение температуры колонки от 50 °C с выдержкой 3 мин до 280 °C со скоростью 5 °C мин; выдержка при 280 °C - 60 мин. Содержание индивидуальных соединений регистрировалось по полному ионному току. Идентификация компонентного состава исследуемых образцов осуществлялась с использованием библиотеки спектров NIST-8 и Wiley. Для хроматографического разделения полученные фракции были дополнительно этерифицированы бутанолом.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1, *а* представлены ИК-спектры образцов ЭНГ и его омыляемой (ЭНГО) и неомыляемой (ЭНГН) фракций, а на рис. 1, б – ЭСпб и его омыляемой (ЭСпбО) и неомыляемой (ЭСпбН) фракций. Полученные ИК-спектры анализировались на основе литературных источников [11–15].

ТАБЛИЦА 1

Данные технического и элементного анализа образцов угля

Образец угля	W ^a , %	A ^d , %	V^{daf} , %	$C^{\rm daf}\!,\%$	$\mathrm{H}^{\mathrm{daf}}$, %	Атомное отношение H/C	(O + N + S), %, по разности	E^{daf} , %
Исходный	9.1	21.5	65.9	57.3	6.3	1.3	36.4	3.8
Дебитуминированный	7.5	27.0	64.4	63.6	5.9	1.1	30.5	_

Примечание. 1. W^a – аналитическая влага; A^d – зольность на сухую пробу; V^{daf} – выход летучих компонентов; C^{daf}, H^{daf} – содержание углерода и водорода соответственно; E^{daf} – общий выход *н*-гептанового и спиртобензольного экстракта; daf – сухая беззольная проба. 2. Прочерк – отсутствует.

Рис. 1. ИК-спектры: *а* – *н*-гептанового экстракта (1) и его омыляемой (2) и неомыляемой (3) фракций; б – спиртобензольного экстракта (4) и его омыляемой (5) и неомыляемой (6) фракций.

Установлено, что ЭНГ – многокомпонентная смесь спиртов, фенолов, алканов, небольшого количества карбоновых кислот и ароматических соединений, сложных эфиров, непредельных углеводородов. В образце преобладают алканы и спирты. После фракционирования в ЭНГО содержатся преимущественно алканы и карбоновые кислоты, а в ЭНГН – алканы и спирты, кар-

ТАБЛИЦА 2

Интегральные интенсивности сигналов функциональных групп по спектрам ¹³С ЯМР (СРМАS) экстрактов, %

Образец	Диапазон химических сдвигов функциональных групп, м. д.								Структурные параметры	
	220-187 187-165 165-145 145-108 108-90 90-48 48-5						48-5	$f_{\rm a}$	$f_{\rm al}$	
	C=O	COOH	C _{ar-O}	C _{ar}	C _{O-alk-O}	C _{alk-O}	C _{alk}			
ЭНГ	1.5	2.2	1.3	4.3	2.5	8.1	80.0	5.6	90.5	
ЭНГО	1.7	2.6	1.7	5.1	2.6	7.9	77.8	6.8	88.3	
ЭНГН	1.4	2.3	1.1	3.7	2.1	8.0	81.3	4.8	91.3	
ЭСпб	3.0	3.6	2.7	8.7	3.1	12.8	64.6	11.4	80.4	
ЭСпбО	3.1	4.2	3.0	10.3	2.9	13.5	62.2	13.3	78.6	
ЭСпбН	1.3	1.7	1.1	4.1	2.2	8.7	79.8	5.2	90.7	

Примечание. $f_{\rm a}$ – степень ароматичности, $f_{\rm al}$ – степень алифатичности.

687

К. М. ШПАКОДРАЕВ и др.

ТАБЛИЦА 3

Образец	Группа веществ											
	Алканы	Алкены	Карбоновые кислоты [*]	Кетоны	Сложные эфиры природные	Спирты	Стерины	фенолы	Терпены	Альдегиды	AMMHЫ	Другие
ЭНГ	2.2	3.1	1.6	1.4	2.5	9.5	0.2	0.8	0.4	-	0.2	0.2
ЭНГО	1.0	0.9	9.1	0.1	2.6	1.2	0.4	1.1	0.3	0.2	-	1.0
ЭНГН	1.9	2.0	2.9	1.3	0.2	17.7	1.2	1.4	1.3	0.3	0.1	0.7
ЭСпб	0.1	4.4	6.3	0.9	0.2	9.5	-	1.2	1.3	0.3	-	0.5
ЭСпбО	1.2	-	14.4	-	2.9	-	0.3	0.8	0.7	-	-	0.6
ЭСпбН	1.2	4.0	4.1	1.2	0.6	10.7	-	0.2	1.2	0.5	0.4	0.9

Групповой состав *н*-гептанового и спиртобензольного экстрактов по данным XMC, относительное содержание в пробе, % (совпадение по базам NIST более 70 %)

* Обнаружены в виде бутиловых эфиров.

боновые кислоты. Спирты, присутствующие в ЭНГО в небольшом количестве, – продукт процесса омыления (реакции щелочного гидролиза сложных эфиров). Карбоновые кислоты, входящие в состав фракции ЭНГН, являются продуктом разложения сложных эфиров природного происхождения.

Из данных ИК-спектроскопии следует, что ЭСпб – многокомпонентная смесь веществ: алканов, карбоновых кислот, непредельных углеводородов, нормальных насыщенных сложных эфиров и небольшого количества соединений ароматического характера. Распределение групп веществ в омыляемой и неомыляемой фракциях аналогично их распределению в ЭНГО и ЭНГН.

Данные ¹³С ЯМР (СРМАЅ) анализа согласуются с данными ИК-спектроскопии. Результаты ¹³С ЯМР (СРМАЅ) показывают (табл. 2), что исследуемые образцы представлены аналогичными веществами: алканами, спиртами, фенолами, карбоновыми кислотами, непредельными углеводородами, нормальными насыщенными сложными эфирами, веществами ароматического характера. При фракционировании в омыляемых фракциях (ЭНГО, ЭСпбО) преобладали карбоновые кислоты и алканы, а в неомыляемых (ЭНГН, ЭСпбН) – алканы и спирты. Вещества ароматического характера концентрировались в ЭНГО и ЭСпбО. Отнесение сигналов проводилось на основе литературных источников [14–17].

По данным ¹³С ЯМР (СРМАS) рассчитаны структурно-групповые параметры [18] для исследуемых образцов: степень ароматичности (f_a) и степень алифатичности (f_{al}), %: $f_a = C_{ar-O} + C_{ar}$; $f_{al} = C_{O-alk-O} + C_{alk-O} + C_{alk}$ (см. табл. 2), где С –

атомы углерода арильных (ar) и алкильных (alk) функциональных групп. Видно, что в образцах преобладают вещества алифатического строения.

Методом ХМС исследован групповой и компонентный состав полученных битумов и их фракций: ЭНГ, ЭНГО, ЭНГН, ЭСпб, ЭСпбО, ЭСпбН. Согласно данным, ЭНГ представляет собой многокомпонентную смесь из спиртов, алканов, алкенов, кетонов и сложных эфиров природного происхождения (табл. 3). В ЭСпб преобладают следующие вещества: спирты, кислоты, алкены, фенолы и терпены.

В дальнейшем, для более узкого фракционирования, ЭНГ и ЭСпб разделяли с применением метода ЖХ. Полученные фракции затем исследовались методом ХМС. Групповое отнесение веществ, обнаруженных в полученных фракциях после разделения экстрактов, приведено в табл. 4. Все идентифицированные карбоновые кислоты представлены в виде сложных эфиров, образовавшихся в результате реакции этерификации карбоновых кислот с бутанолом, которая проводилась в качестве предварительной подготовки образцов для ХМС-исследования.

При разделении методом ЖХ ЭНГ толуолом элюирована фракция, состоящая преимущественно из карбоновых кислот, спиртов, небольшого количества кетонов и стеринов, главным образом представленных бутил 9-гексадеценатом (10.5 %), лигноцериловым спиртом (7.6 %), бегениловым спиртом (5.3 %), 1-гептакозанолом (5.2 %). Ранее данные вещества были обнаружены в ЭНГН. Во фракции, элюированной этилацетатом, идентифицированы бутиловые эфиры гексадекановой и октадекановой кислот и бутилолеат.

ТАБЛИЦА 4

Групповой состав *н*-гептанового и спиртобензольного экстрактов по данным ЖХ и ХМС, относительное содержание, % (совпадение по базам NIST более 70 %)

Элюент	Группы веществ									
	Алканы	Карбоновые кислоты*	Сложные эфиры природные	Спирты	Стерины	Терпены	Алкены	Кетоны	Не иденти- фицировано	
			н-Гептан	овый экст	гракт					
Толуол	-	28.1	-	25.0	1.3	-	-	0.9	44.7	
Этилацетат	-	16.6	-	-	-	-	-	-	83.4	
Бутанол	-	100	-	-	-	-	-	-	-	
Этанол	-	97.2	-	-	-	-	2.8	-	_	
Этанол/муравьиная кислота (1 : 1)										
Фракция 1	-	78.7	-	-	-	-	-	-	21.3	
Фракция 2	-	25.1	-	-	-	-	-	-	74.9	
Бутанол (T = 118 °C)	-	20.4	-	-	-	-	-	-	79.6	
			Спиртобена	ольный э	кстракт					
Толуол	0.4	18.4	1.0	10.6	0.9	0.5	3.9	-	64.3	
Этилацетат	-	62.0	-	-	-	-	-	-	38.0	
Бутанол	-	86.8	13.2	-	-	-	-	-	_	
Этанол	-	96.9	-	-	-	-	3.1	-	-	
Этанол/муравьиная кислота (1 : 1)										
Фракция 1	-	59.7	8.0	-	-	-	-	-	32.3	
Фракция 2	-	38.7	-	-	-	-	-	-	61.3	
Бутанол (T = 118 °C)	-	34.1	7.9	-	-	-	-	-	58.0	

* Обнаружены в виде бутиловых эфиров.

Бутанолом была извлечена фракция, состоящая только из трех карбоновых кислот, с наибольшим относительным содержанием бутилового эфира гексадекановой кислоты (41.3 %). Элюирование этанолом позволило получить фракцию, состоящую преимущественно из карбоновых кислот, с наибольшим относительным содержанием бутилолеата (74 %). Смесью растворителей этанол/муравьиная кислота (1:1) были элюированы две фракции. Фракция 1 состоит преимущественно из карбоновых кислот, с наибольшим относительным содержанием бутилолеата (69 %). Во фракции 2 идентифицированы только карбоновые кислоты. Горячим бутанолом извлечена фракция, в которой идентифицированы только карбоновые кислоты, преимущественно п-бутилмиристат (6.6 %) и бутиловый эфир гексадекановой кислоты (6.4 %).

Разделение методом ЖХ ЭСпб также позволило получить ряд фракций. Толуолом элюирована фракция, с преимущественным содержанием бутилолеата (8.6 %), *n*-тетракозанола-1 (4.2 %), 1-гексакозанола (3.4 %). Этилацетатом элюирована фракция, состоящая из двух веществ – бутилового эфира гексадекановой кислоты (62 %), второе вещество идентифицировать не удалось. Бутанолом элюирована фракция, состоящая преимущественно из карбоновых кислот, с наибольшим относительным содержанием бутилового эфира гексадекановой кислоты (33 %) и бутил 9-гексадецената (30 %). Этанолом элюирована фракция с наибольшим относительным содержанием бутилолеата (76 %). Смесью растворителей этанол/муравьиная кислота (1:1) элюированы две фракции, содержащие в значительном количестве бутилолеат -51 % во фракции 1 и 38.7 % во фракции 2. В остаточной фракции, извлеченной из колонки горячим бутанолом, обнаружено высокое содержание бутилолеата (14.9 %) и бутилового эфира гексадекановой кислоты (10.2 %).

В исходных экстрактах ЭНГ, ЭСпб и их омыляемых и неомыляемых фракциях идентифицирован ряд БАВ, присутствующих в значительных концентрациях (табл. 5). В исследуемых образцах обнаружен гомологический ряд алифатических карбоновых кислот: C₁₈, C₂₀, C₂₂, C₂₄, C₂₆, C₂₈, C₃₀, C₃₂, C₃₄, C₃₆. Видно, что преобладают кислоты с четным количеством углеродных атомов.

К. М. ШПАКОДРАЕВ и др.

ТАБЛИЦА 5

Биологически активные вещества (БАВ), обнаруженные во фракциях *н*-гептанового и спиртобензольного экстрактов методом XMC

Вещество [19]	Относительное	Совпадение					
	содержание в образце, %	по базе NIST, $\%$					
Омыляемая фракция н-гептанового экстракта							
Олеиновой кислоты бутиловый эфир	1.0	99					
Цериловый спирт	1.0	99					
β-Токоферол	0.1	89					
13-Гидрокси-14-изопропилподокарпа- 8,11,13-триен-3-он	0.3	90					
Ферругинол	0.2	87					
Бутилмиристат	0.7	99					
Гексадекановой кислоты бутиловый эфир	2.13	99					
Октадекановой кислоты бутиловый эфир	0.6	91					
Неомыляемая фракци:	я <i>н</i> -гептанового экстракта						
Ферругинол	0.4	87					
Олеиновой кислоты бутиловый эфир	0.3	96					
Цериловый спирт	3.8	99					
Бегениловый спирт	2,0	99					
Лигноцериловый спирт	4.2	99					
ү-Токоферол	0.1	98					
β-Амирин	0.3	99					
1-Октакозанол	4.0	99					
н-Тетракозанол-1	0,2	93					
Бутилмиристат	0.4	99					
Омыляемая фракция сп	иртобензольного экстракта						
Сугиол	0.7	99					
Октадекановой кислоты бутиловый эфир	0.8	99					
Бутилмиристат	0.4	99					
Бутилпарабен	0.8	99					
Гексадекановой кислоты бутиловый эфир	1.5	99					
Себациновой кислоты бутиловый эфир	1.7	91					
Неомыляемая фракция с	пиртобензольного экстракта						
Лигноцериловый спирт	3.55	99					
β-Амирин	0.1	97					
Бегениловый спирт	2.0	99					
Цериловый спирт	3.0	99					
ү-Токоферол	0.2	99					
Сугиол	0.5	99					
Октадекановой кислоты бутиловый эфир	0.4	99					
Бутилпальмитат	0.9	99					
1-Триаконтанол	2.0	95					

ЗАКЛЮЧЕНИЕ

Исследуемые экстракты битумов, полученные из бурого угля Тюльганского месторождения Южно-Уральского бассейна, – это сложные многокомпонентные смеси спиртов, фенолов, алканов, небольшого количества карбоновых кислот и ароматических соединений, сложных эфиров, непредельных углеводородов. В исследуемых экстрактах преобладают вещества алифатического строения.

Использование метода ЖХ позволило провести более узкое фракционирование ЭНГ и ЭСпб. Выделен ряд фракций с высоким относительным содержанием отдельных веществ, среди которых: бутилолеат – с относительным содержанием в отдельных фракциях до 76 %; бутилового эфира гексадекановой кислоты – с относительным содержанием в отдельных фракциях до 62 %.

В битумах, экстрагированных н-гептаном и спиртобензоловой смесью (этанол/бензол (1:1)) из бурого угля Тюльганского месторождения, а также в их омыляемых и неомыляемых фракциях идентифицирован ряд БАВ: сугиол; β- и γ-токоферолы; β-амирин; бегениловый, цериловый и лигноцериловый спирты; *n*-тетракозанол-1; гекса-, октадекановая кислота; бутилмиристат; бутилпарабен; ферругинол; эйкозан. Основная часть БАВ концентрировалась в неомыляемой части н-гептанового и спиртобензольного экстрактов. В исследуемых образцах обнаружен гомологический ряд алифатических карбоновых кислот: $\mathbf{C}_{18}, \mathbf{C}_{20}, \mathbf{C}_{22}, \mathbf{C}_{24}, \mathbf{C}_{26}, \mathbf{C}_{28}, \mathbf{C}_{30}, \mathbf{C}_{32}, \mathbf{C}_{34}, \mathbf{C}_{36}$. Преобладают кислоты с четным количеством углеродных атомов.

Работа выполнена при поддержке РФФИ (грант № 18-43-420003 р_а "Развитие научных основ глубокой переработки бурых углей с целью создания препаратов для рекультивации нарушенных земель").

Работа выполнена с использованием оборудования Центра коллективного пользования ФИЦ УУХ СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- Жеребцов С. И. Алкилирование спиртами твердых горючих ископаемых низкой степени углефикации: дис. ... д-ра хим. наук. Российский химико-технологический университет им. Д. И. Менделеева, Москва, 2017.
- 2 Жеребцов С. И. Экстракционные технологии и продукты переработки бурых и некондиционных углей // Уголь. 2009. № 7. С. 63-66.
- 3 Жеребцов С. И. Нетопливное использование Итатского бурого угля. / В сб.: Опыт и перспективы наукоемких технологий в угольной промышленности Кузбасса. Тр. науч.тех. конф. Кемерово: Институт угля и углехимии СО РАН, 1998. С. 258–262.
- 4 Zherebtsov S. I., Moiseev A. I. Composition of the wax fraction of bitumen from methylated brown coals // Solid Fuel Chemistry. 2009. Vol. 43, No. 2. P. 71–79.

- 5 Жеребцов С. И., Моисеев А. И. Комплексные технологии и продукты переработки торфов, бурых и некондиционных углей Кузбасса // Гор. информ.-аналит. бюл. 2008. № S7. C. 114-124.
- 6 Аронов С. Г., Нестеренко Л. Л. Химия твердых горючих ископаемых Харьков: Изд-во Харьк. гос. ун-та, 1960. 371 с.
- 7 Белькевич П. И., Голованов Н. Г., Долидович Е. Ф. Битумы торфа и бурого угля. Минск: Наука и техника, 1989. 125 с.
- 8 Шпакодраев К. М., Жеребцов С. И., Исмагилов З. Р. Экстракция и компонентный состав битумоидов твердых горючих ископаемых (обзор) // Вестн. Кузбас. гос. техн. ун-та. 2018. № 1. С. 169–180.
- 9 Шпакодраев К. М., Жеребцов С. И., Смотрина О. В., Малышенко Н. В., Исмагилов З. Р. Структурно-групповой и компонентный состав фракций битумов Тюльганского бурого угля // Химия уст. разв. 2018. Т. 26, № 6. С. 707-716.
- 10 Айвазов Б. В. Практическое руководство по хроматографии. М.: Высш. шк., 1968. 279 с.
- 11 Наканиси К. Инфракрасные спектры и строение органических соединений. М.: Мир, 1965. 219 с.
- 12 Беллами Л. Д. Новые данные по ИК-спектрам сложных молекул. М.: Мир, 1971. 318 с.
- 13 Pretsch E., Bihlmann P., Affolter C. Structure Determination of Organic Compounds: Tables of Spectral Data. / 3rd ed. Berlin, Heidelberg, New York, Barcelona, Hong Kong, London, Milan, Paris, Singapore, Tokyo: Springer, 2000. 404 p.
- 14 Nyquist R. A. Interpreting Infrared, Raman, and NMR Spectra. Vol. 1. San Diego: Acad. press, 2001. 448 p.
- 15 Silverstein R. M., Webster F. X., Kiemle D. J. Spectrometric Identification of Organic Compounds / 7th ed. Hoboken: John Wiley & Sons. Inc., 2005. 502 p.
- 16 Kalaitzidis S., Georgakopoulos A., Christanis K., Iordanidis A. Early coalification features as approached by solid state 13C CPMAS NMR spectroscopy // Geochim. Cosmochim. Acta. 2006. Vol. 70. P. 947–959.
- 17 Mao J.-D., Schimmelmann A., Mastalerz M., Hatcher P. G., Li Y. Structural features of a bituminous coal and their changes during low-temperature oxidation and loss of volatiles investigated by advanced solid-state NMR spectroscopy // Energy & Fuels. 2010. No. 24. P. 2536-2544.
- 18 Калабин Г. А., Каницкая Л. В., Кушнарев Д. Ф. Количественная спектроскопия ЯМР природного органического сырья и продуктов его переработки. М.: Химия, 2000. 408 с.
- 19 PubChem [Электронный ресурс]: [науч. база данных]. Химических соединения и смеси. USA: National Center for Biotechnology Information, 2004. Режим доступа: https:// pubchem.ncbi.nlm.nih.gov, свободный (дата обращения: 30.08.2019).