УДК 536.7:662.74

Синтез, нагрев и плавление стехиометрического стекла (CaSiO₃•SiO₂)

В.С. Энгельшт¹, В.Ж Мураталиева²

E-mail: ven.m.j@rambler.ru

Проведен термодинамический анализ (программа TERRA) синтеза, нагрева и плавления стехиометрического стекла $CaSiO_3 \bullet SiO_2$. Химически чистые вещества — кремнезем и известь — подвергаются экзотермической реакции с последующим внешним нагревом и плавлением. Синтезируется волластонит, выделяется теплота химической реакции $Q_{\rm xp}=-505,3\,$ кДж/кг и повышается температура $T=820\,$ К. При $T_{\rm пл}=1812-1814\,$ К волластонит плавится, образуется смесь жидкого волластонита и конденсированного кремнезема. При $T_{\rm пл}=1995-1997\,$ К плавится кремнезем, образуется стехиометрическое стекло ($CaSiO_3 \bullet SiO_2$). Исследованы эволюции температуры и теплоты плавления волластонита и кремнезема путем детального пошагового термодинамического расчета ($\Delta T=0,1\,$ K).

Ключевые слова: термодинамический анализ, экзотермический эффект, стекло, синтез, нагрев, плавление, температура, энтальпия, теплота химической реакции, теплосодержание.

Введение

Стекло, как объект разработки, изучается многие годы. Исследованы разнообразные виды стекла [1]. В настоящей работе представляется неизвестный ранее состав стекла, так называемое стехиометрическое стекло (CaSiO₃◆SiO₂), которое может быть получено смешением и нагревом оксидов кальция и кремния. Рассматривается эволюция синтеза, нагрева и плавления стекла при использовании химически чистых веществ, экзотермического эффекта и внешнего подогрева.

Современный термодинамический анализ позволяет по исходным компонентам вычислить конечный состав вещества и все термодинамические параметры. Такую возможность предоставляет универсальная программа TERRA [2], которая основана на принципе максимума энтропии, имеет обширную базу данных по термодинамическим свойствам веществ и позволяет получить полную информацию о термодинамическом анализе. Программа предназначена для расчета произвольных систем с химическими и фазовыми превращениями. Методическая проработка по термодинамическому анализу изложена в работе [3].

¹Институт физико-технических проблем и материаловедения НАН КР, Бишкек, Кыргызстан

²Кыргызский государственный технический университет, Бишкек, Кыргызстан

Цель настоящей работы заключается в термодинамическом анализе синтеза, нагрева и плавления стехиометрического стекла. Определяются теплота химической реакции, энтальпия образования, теплосодержание, температура плавления, теплота плавления, диапазон температуры плавления, температура смеси.

Метод исследования

Расчет адиабатической температуры и продуктов реакции проводился по универсальной программе TERRA. Адиабатическая температура при вычисленных компонентах равновесной системы находится на основе закона сохранения энергии [4]

$$I_{\mathrm{np}}\left(T_{\mathrm{a}\mathrm{J}}\right) = I_{\mathrm{ucx}}\left(T_{0}\right), \quad I_{\mathrm{ucx}}\left(T_{0}\right) = \sum{}_{j}M_{j}\Delta_{f}h_{j}^{0},$$

$$I_{\text{прод}}(T_{\text{ад}}) = \sum_{i} M_{i} \Delta_{f} h_{i}^{0} + \sum_{i} M_{i} \int_{T_{0}}^{T_{\text{ag}}} C_{p} dT.$$

где $I_{\rm исх}\left(T_0\right)$ — сумма энтальпий образования исходных компонентов $\Delta_f h_i^0$ с учетом их мольной доли $M,\ I_{\rm прод}\left(T_{\rm ag}\right)$ — сумма энтальпий образования продуктов переработки и энтальпий их нагрева от начальной температуры T_0 = 298,15 K до адиабатической $T_{\rm ag}$, C_p — удельная теплоемкость.

Изучается следующий состав $SiO_2^c + \alpha CaO^c$, где (°) — конденсированное состояние. В состав вводится минимальное количество аргона $Ar = 10^{-5}$ %, что необходимо для использования программы TERRA в присутствии газовой компоненты.

Рассмотрим методику оценки энергетики химических реакций на примере взаимодействия кремнезема с известью при $\alpha=0,5$. При заданных p=0,095 МПа, T=1500 K, исходный состав $SiO_2=1$ моль, CaO=0,5 моля, $Ar=10^{-5}$ % нормируется в программе TERRA на массу 1 кг и имеет при $\alpha=0,5$ компоненты $SiO_2^{\ c}_{\ ucx}=11,35$ моль/кг, $CaO_{\ ucx}^{\ c}=5,67$ моль/кг. Продукты реакции и результаты анализа приведены в табл. 1. Здесь $\Delta_f h^0$ — энтальпия образования вещества при стандартных условиях, Δh_{1500} — теплосодержание вещества при температуре T=1500 K, $Q_{\rm xp}$ — теплота химической реакции, $\Delta_f H^0$ и ΔH — соответствующие величины с учетом мольной доли вещества, I — энтальпия образования.

Вычислим энтальпию образования исходного сырья:

$$\begin{split} I_{\text{исх}} &= M_{\text{SiO}_{\text{2ucx}}^{\text{c}}} \cdot \Delta_f h_{\text{SiOc}_2^{\text{c}}}^0 + M_{\text{CaO}_{\text{ucx}}^{\text{c}}} \cdot \Delta_f h_{\text{CaO}^{\text{c}}}^0 \,, \\ \\ I_{\text{исx}} &= 11,35 \cdot [-910,701] + 5,67 \cdot [-635,091] = -13938,2 \text{ кДж/кг}. \end{split}$$

Вычисляем энтальпию продуктов реакции:

$$\begin{split} I_{\text{прод}} &= M_{\text{SiO}_2^c} \cdot \Delta_f h_{\text{SiOc}_2^c}^0 + M_{\text{CaSiO}_3^c} \cdot \Delta_f h_{\text{CaSiO}_3^c}^0, \\ I_{\text{прод}} &= 5,67[-910,701] + 5,67[-1634,940] = -14443,4 \ \text{кДж/кг}. \end{split}$$

Таблица Продукты реакции и результаты анализа α = 0,5, I = -13116 кДж/кг, T = 1500 K, P = 0,095 МПа

Вещество	M,	Δh_{1500} ,	$\Delta H = M \cdot \Delta h_{1500},$	$\Delta_{f} h^{0}$,	$\Delta_f H^0 = M \cdot \Delta_f h^0,$	Q_{xp} ,
	моль/кг	кДж/моль	кДж/кг	кДж/моль	кДж/кг	кДж/кг
SiO ₂ ^c	5,67	83,2	472,0	-910,701	-5167,1	
CaSiO ₃ ^c	5,67	150,8	855,4	-1634,940	-9276,3	
Σ			1327,4		-14443,4	-505,3

Найдем теплоту химической реакции $Q_{\rm xp}$ [4]. В соответствии с компонентным составом продуктов результирующая реакция имеет вид:

11,35
$$SiO_{2\mu cx}^c + 5,67 CaO_{\mu cx}^c = 5,67 SiO_2^c + 5,67 CaSiO_3^c$$

Отсюда тепловой эффект химической реакции

$$\begin{split} Q_{\rm xp} &= 5,67 \Delta_f h_{\rm SiO_2^c}^0 + 5,67 \Delta_f h_{\rm CaSiO_3^c}^0 - \\ &- 11,35 \Delta_f h_{\rm SiO_{2uex}^c}^0 - 5,67 \Delta_f h_{\rm CaO_{uex}^c}^c = -505,3~{\rm кДж/кг}. \end{split}$$

Теплосодержание системы вычисляется по вспомогательной программе TERRA (см. табл. 1): $\Delta H = M \cdot \Delta h_{1500} = 1327,4$ кДж/кг. Дополнительное соотношение $\Delta I_{\rm исx} = I_{\rm исx} - I_0$, $I_{\rm исx}$ — энтальпия образования сырья, I_0 — энтальпия образования сырья при $\alpha = 0$. $\Delta I_{\rm прод} = I_{\rm прод} - I_0$, $I_{\rm прод}$ — энтальпия образования продуктов реакций.

Расчет по программе TERRA выполняется согласно равенству $\Delta H + \Delta_f H^0 = I$. Результаты, приведенные в табл. 1, показывают, что условие выполнено.

Синтез волластонита по реакции $SiO_2^c + \alpha CaO$

Исходные компоненты SiO_{2ucx}^c и CaO_{ucx}^c смешиваются последовательно с увеличением α от 0 до 0,5. Результаты расчета приведены в табл. 2.

. Tаблица 2 Исходные компоненты и продукты экзотермической реакции ${
m SiO_2}^{\rm c}$ + $\alpha{
m CaO}^{\rm c}$

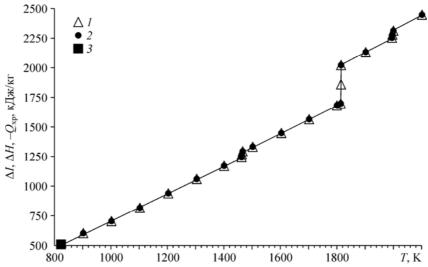
α	$\mathrm{SiO}^{\mathrm{c}}_{2ucx}$, моль/кг	$\mathrm{CaO}_{\mathrm{ucx}}^{\mathrm{c}}$, моль/кг	$\mathrm{SiO}_{2}^{\mathrm{c}}$, моль/кг	${\sf CaSiO}_2^{\sf c}$, моль/кг	$T_{\mathrm{a}\mathrm{J}}$, К
0	16,64	0	16,64	0	298
0,1	15,22	1,52	13,70	1,52	458
0,2	14,03	2,81	11,22	2,81	576
0,3	13,00	3,90	9,10	3,90	669
0,4	12,12	4,85	7,27	4,85	750
0,5	11,35	5,67	5,67	5,67	820
$I_{\rm ucx}$, кДж/кг	$I_{ m npog}$, кДж/кг	$\Delta I_{ m ucx}$, кДж/кг	$\Delta I_{\rm прод}$, кДж/кг	ΔΗ, κДж/кг	Q_{xp} , кДж/кг
-15156,8	-15156,8	0	0	0	0
-14829,3	-14965,3	327,5	191,5	136,2	-136,2
-14554,0	-14804,1	602,8	352,7	252,8	-250,0
-14318,5	-14666,3	838,3	490,5	346,4	-347,9
-14115,8	-14547,4	1041,0	609,5	431,6	-431,6
-13938,2	-14443,4	1218,6	713,3	505,2	-505,3

Здесь исходные компоненты — ${\rm CaO}^{\rm c}_{\rm исx}$, ${\rm SiO}^{\rm c}_{\rm иcx}$, продукты реакции — ${\rm SiO}^{\rm c}_2$, ${\rm CaSiO}^{\rm c}_3$, ΔI — приращение энтальпии, $Q_{\rm xp}$ — теплота химической реакции, ΔH — теплосодержание, $T_{\rm an}$ — адиабатическая температура.

По мере увеличения α увеличивается содержание CaO^c. Оксид кальция как окислитель вступает в реакцию с кремнеземом, образуется волластонит, выделяется теплота химической реакции, увеличивается теплосодержание и повышается температура. Теплота химической реакции идет на теплосодержание $|Q_{xp}| = \Delta H$. При $\alpha = 0,5$ имеем шихту стехиометрического стекла (CaSiO₃ + SiO₂).

Нагрев и плавление шихты стехиометрического стекла

На рис. 1 показаны компоненты энергии шихты стехиометрического стекла в диапазоне температур 800÷2100 К. При температуре 820 К завершается реакция экзотермического процесса при значениях Q=-505,3 кДж/кг, $\Delta I=505,3$ кДж/кг, $\Delta H=505,2$ кДж/кг. Этим параметрам соответствует темный квадратный символ на рис. 1.


При значениях температуры 1463 K, 1812 K, 1996 K проявляются пертурбации — нарушение обычного хода процесса. Происходит перестройка теплоемкости волластонита, плавление волластонита и кремнезема. При температуре 1812 K плавится волластонит. Кремнезем оплавляется волластонитом и образуется суспензия жидкого волластонита в конденсированном кремнеземе. При температуре 1996 K происходит плавление кремнезема. При последующем нагреве кремнезем плавится, жидкий кремнезем смешивается с жидким волластонитом и образуется стехиометрическое стекло (CaSiO₃◆SiO₂).

Для данного процесса при смешении исходного сырья $SiO_2 + 0.5$ CaO часть энергии компенсируется за счет экзотермической реакции, а именно за счет теплоты химической реакции $Q_{\rm xp} = -505.3$ кДж/кг.

Пертурбации энергии волластонита и кремнезема

Программная система TERRA позволяет проследить детальную эволюцию пертурбации (см. рис. 1). Такая возможность основана на полноте термодинамических свойств и высокой точности вычисления. Опыт показывает, что если состав продуктов изменяется монотонно по энтальпии образования, то расчетная процедура оказывается весьма устойчивой и обеспечивает малый шаг, вплоть до $\Delta T = 0.1$ K.

На рис. 2 показаны фрагменты пертурбации. Прежде всего отметим, что устойчивость расчетной процедуры обеспечивается с шагом $\Delta T=0,1$ К (см. рис. 2). Пертурбация проявляется в диапазоне температуры $\Delta T=2$ К. В этом диапазоне изменение температуры незначительное, так что теплосодержание системы ΔH почти постоянно, что обусловлено малым изменением температуры плавления. Теплосодержание изменяется скачком после завершения плавления (пертурбация). Приращение энтальпии ΔI и соответственно доли проплавленного материала и энтальпия плавления ступенчато возрастают с температурой. Такова эволюция этого процесса.

Puc. 1. Зависимости компонент энергии шихты стекла от температуры. $\Delta I \; \mathrm{к} Д \mathrm{ж} / \mathrm{kr} \; (1), \; \Delta H \; \mathrm{k} Д \mathrm{ж} / \mathrm{kr} \; (2), \; -Q_{\mathrm{xp}} \; \mathrm{k} Д \mathrm{ж} / \mathrm{kr} \; (3).$

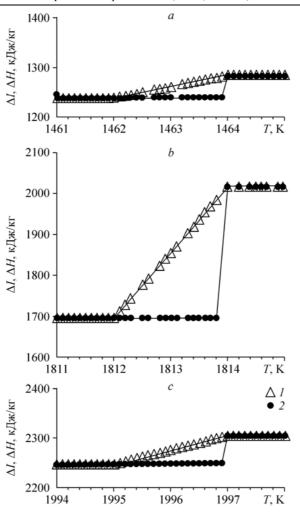


Рис. 2. Фрагменты пертурбаций.

a — перестройка теплоемкости волластонита, b — плавление волластонита, c — плавление кремнезема; l — Δl кДж/кг, 2 — ΔH кДж/кг.

Энергия пертурбации $\Delta H_{\rm np}$ находится из соотношения

$$\Delta H_{\text{IID}} = \Delta I - \Delta H$$
.

Деталировка пертурбации волластонита и кремнезема получена впервые. В табл. 3 представлены параметры пертурбации, приведены сводные характеристики. Температура плавления, полученная в результате теоретических исследований, практически равна усредненным значениям из справочных данных. Диапазон температуры плавления составляет два градуса: $\Delta T = 2$ К. Из нашего расчета $\Delta H_{\rm пл} = 9,3$ кДж/моль, что несколько отличается от справочного значения (9,6 кДж/моль [5]). Затраты энергии на пертурбации составляют 9, 57, 10 % от теплоты экзотермической реакции $Q_{\rm xp}$ и соответственно 3, 14, 2 % от полной энергии ΔI . При этом КПД процесса приготовления стекла с учетом экзотермического процесса равен 39, 25, 22 %.

Параметры пертурбации

Таблица 3

Параметры	Теплоемкость волластонита	Плавление вол- ластонита	Плавление кремнезема
<i>T</i> , K	1462÷1464	1812÷1814	1995÷1997
ΔI , кДж/кг	1285,7	2016,5	2305,6
$Q_{ m xp}$, кДж/кг	505,3	505,3	505,3
$\Delta H_{\rm np}$, кДж/кг;	43,5	287,4	52,6
$\Delta H_{ m np}$, кДж/(моль ${ m SiO_2}$)			9,3
$\Delta H_{\rm np}/\Delta I$, %	3	14	2
$\eta = Q_{\rm xp}/\Delta I$, %	39	25	22
$\Delta H_{\rm np}/Q_{\rm xp}$, %	9	57	10
$\Delta H_{\Pi\Pi}$, кДж/(моль SiO_2) [5]			9,6
<i>T</i> , K		1812 [6]	1996 [5]

Выводы

- 1. Зафиксированы пертурбации теплоемкости волластонита (T = 1462-1464 K), плавления волластонита (T = 1812-1814 K), плавления кремнезема (T = 1995-1997 K).
 - 2. Определен диапазон температуры пертурбаций $\Delta T = 2$ K.
- 3. Экзотермический эффект уменьшает на 22-27 % затраты тепловой энергии на приготовление стекла.

Список литературы

- **1. Саркисов П.Д., Орлова Л.А.** Химическая энциклопедия. Т. 4. Стекло неорганическое / Редкол.: Зефиров Н.С. (гл. ред.) и др. М.: Большая Российская энцикл., 1995. С. 422–424.
- 2. Трусов Б.Г. Программная система TERRA для моделирования фазовых и химических равновесий в плазмохимических системах // 3-й Межд. симп. по теорет. и прикл. плазмохимии. Сб. материалов. Т. І. Иваново, 2002 С. 217–220
- **3.** Энгельшт В.С., Балан Р.К. Химическая термодинамика парокислородной газификации графита // Теплофизика высоких температур. 2011. Т. 49, № 5. С. 763–770.
- **4. Термодинамические** свойства индивидуальных веществ: справочное издание. Т. 1, кн. 1 / Л.В. Гурвич, И.В. Вейц, В.А. Медведев и др. М.: Наука, 1978. 496 с.
- **5. Сахаров В.В.**. Кремния диоксид // Химическая энциклопедия / Ред.: Кнунянц И.Л. (гл. ред.) и др. М.: Сов. энцикл., 1990. Т. 2. С. 517–518.
- **6. Никонова Н.С.**. Кальция силикаты // Химическая энциклопедия / Ред.: Кнунянц И.Л. (гл. ред.) и др. М.: Сов. энцикл., 1990. Т. 2. С. 298.

Статья поступила в редакцию 8 августа 2012 г., после доработки—18 февраля 2013 г.