УДК 518.12

Переобусловливатель для сеточного оператора Лапласа на сгущающейся сетке

А.М. Мацокин^{1,2}

Мацокин А.М. Переобусловливатель для сеточного оператора Лапласа на сгущающейся сетке // Сиб. журн. вычисл. математики / РАН. Сиб. отд-ние. — Новосибирск, $2013. - \mathrm{T}.\ 16,\ №\ 2. - \mathrm{C}.\ 165–170.$

В работе доказано, что сеточный оператор, аппроксимирующий задачу Дирихле для уравнения Пуассона методом конечных элементов на кусочно-линейных восполнениях на "равномерно" сгущающейся сетке, топологически эквивалентной прямоугольной (т.е. полученной путем сдвига узлов прямоугольной сетки), эквивалентен по спектру оператору 5-ти точечной разностной схемы на равномерной сетке.

Ключевые слова: задача Дирихле для уравнения Пуассона, кусочно-линейные восполнения на триангуляции, аппроксимация оператора Лапласа методом конечных элементов на триангуляции, топологически эквивалентные триангуляции, переобусловливатель.

Matsokin A.M. Preconditioner for a Laplace grid operator on a condensed grid // Siberian J. Num. Math. / Sib. Branch of Russ. Acad. of Sci. — Novosibirsk, 2013. — Vol. 16, N_2 2. — P. 165–170.

In this paper, it is proved that a Laplace grid operator approximating a Dirichlet boundary value problem for the Poisson equation by the finite element method with piecewise-linear functions on an evenly condensed grid that is topologically equivalent to a rectangular grid (i.e. obtained by shifting the rectangular grid nodes) is equivalent, in the range, to the operator of a 5-point difference scheme on a uniform grid.

Key words: Dirichlet boundary value problem for the Poisson equation, finite element method with piecewise-linear functions, condensed grid (topologically equivalent to a rectangular grid), preconditioner.

1. Введение

Эта статья основана на результате работы автора [1] (см. также [2]) о спектральной эквивалентности матриц жесткости классического Р1 (кусочно-линейные восполнения) метода конечных элементов (см., напр., [3, 4]) для оператора Лапласа на двух топологически эквивалентных (см., напр., [5]) квазиравномерных двумерных триангуляциях.

Излагаемый в предлагаемой статье результат об эквивалентности сеточного оператора Лапласа на сгущающейся сетке, топологически эквивалентной квадратной сетке, сеточному оператору Лапласа на квадратной сетке уточняет и подтверждает теоретически и экспериментально утверждения [4, гл. 6, §4].

¹Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090

 $^{^2}$ Новосибирский государственный университет, ул. Пирогова 2, Новосибирск, 630090 E-mail: matsokin@oapmg.sscc.ru

2. Формулировка краевой задачи и ее аппроксимации

В единичном квадрате Ω рассмотрим задачу Дирихле для уравнения Пуассона:

$$-\Delta u(x,y) = f(x,y), (x,y) \in \Omega = \{(x,y) : 0 < x, y < 1\}, u(x,y) = 0, (x,y) \in \Gamma_0 = \partial\Omega.$$
 (1)

Предположим, что для аппроксимации задачи (1) методом конечных элементов в подпространстве кусочно-линейных восполнений на триангуляции Ω_h квадрата Ω с множеством узлов

$$V_{\Omega_h} = \{V_{i,j}\}_{i,j=0}^{n+1},\tag{2}$$

которая получена сдвигом узлов триангуляции квадратной сетки $\Omega_h^{\mathrm{uniform}}$:

$$V_{\Omega_{k}^{\text{uniform}}} = \{ V_{i,j}^{\text{uniform}} = (x_i, y_j) \mid_{i,j=0}^{n+1} : x_i = i \cdot h, \ y_j = j \cdot h, \ h = 1/(n+1) \},$$
 (3)

т. е. триангуляции Ω_h и $\Omega_h^{\mathrm{uniform}}$ топологически эквивалентны. Обозначим через $W^1_{2,h}(\Omega_h,\Gamma_0)\subset W^1_2(\Omega)$ ($W^1_2(\Omega)$ — пространство Соболева суммируемых в квадрате вместе со своими первыми производными функций) подпространство кусочно-линейных восполнений на триангуляции Ω_h : функций, непрерывных в Ω_h , линейных в каждом треугольнике триангуляции Ω_h , равных нулю на Γ_0 .

Тогда задачу (1) можно аппроксимировать методом конечных элементов либо в подпространстве $W_{2,h}^1(\Omega_h, \Gamma_0)$:

$$u_h \in W_{2,h}^1(\Omega_h, \Gamma_0) : \int_{\Omega_h} (\nabla u_h, \nabla v_h) \, dx \, dy = \int_{\Omega_h} f \cdot v_h \, dx \, dy \, \forall \, v_h \in W_{2,h}^1(\Omega_h, \Gamma_0), \quad (4)$$

либо в подпространстве $W^1_{2,h}(\Omega_h^{\mathrm{uniform}},\Gamma_0)$:

$$u_h^{\text{uniform}} \in W^1_{2,h}(\Omega_h^{\text{uniform}}, \Gamma_0) :$$

$$\int_{\Omega_h} (\nabla u_h^{\text{uniform}}, \nabla v_h^{\text{uniform}}) \, dx \, dy = \int_{\Omega_h} f \cdot v_h^{\text{uniform}} \, dx \, dy \, \forall \, v_h^{\text{uniform}} \in W^1_{2,h}(\Omega_h^{\text{uniform}}, \Gamma_0). \tag{5}$$

Пронумеруем (любым способом, но одинаково) внутренние узлы топологически эквивалентных триангуляций Ω_h и $\Omega_h^{\text{uniform}}$:

$$N(V_{i,j} \in \Omega_h) = N(V_{i,j}^{\text{uniform}} = (x_i, y_j) \in \Omega_h^{\text{uniform}}).$$

Обозначим через $\bar{v}_h \in R^{n \times n}$ и $\bar{v}_h^{\mathrm{uniform}} \in R^{n \times n}$ векторы значений кусочно-линейных функций $v_h \in W^1_{2,h}(\Omega_h,\Gamma_0)$ и $v_h^{\mathrm{uniform}} \in W^1_{2,h}(\Omega_h^{\mathrm{uniform}},\Gamma_0)$ во внутренних узлах триангуляций Ω_h и $\Omega_h^{\rm uniform},$ по которым однозначно определяются функции v_h и $v_h^{\rm uniform}$

Тогда задачи (4) и (5) сводятся к решению систем линейных алгебраических уравнений:

$$A_h \cdot \bar{u}_h = \bar{f}_h \tag{6}$$

И

$$A_h^{\text{uniform}} \cdot \bar{u}_h^{\text{uniform}} = \bar{f}_h^{\text{uniform}}.$$
 (7)

Далее мы докажем, что (при определенных условиях сгущения сетки $\Omega_h^{\mathrm{uniform}}$ до сетки Ω_h) матрицы A_h и A_h^{uniform} эквивалентны по спектру (с постоянными, не зависящими от h) и оценим постоянные их эквивалентности.

А.М. Мацокин 167

3. Оценка констант эквивалентности матриц A_h и A_h^{uniform}

Мы хотим оценить константы эквивалентности матриц A_h и $A_h^{\rm uniform}$ систем линейных алгебраических уравнений (6) и (7) порядка $n \times n$, т. е. определить константы C_0 и C_1 в неравенстве

$$C_0 \le \frac{(A_h \bar{v}_h, \bar{v}_h)_{R^{n \times n}}}{(A_h^{\text{uniform}} \bar{v}_h, \bar{v}_h)_{R^{n \times n}}} \le C_1 \quad \forall \ \bar{v}_h \in R^{n \times n}. \tag{8}$$

Прежде всего заметим, что каждому вектору $\bar{v}_h \in R^{n \times n}$ соответствуют кусочно-линейные функции:

$$v_h(x,y) \in W^1_{2,h}(\Omega_h, \Gamma_0) \leftrightarrow \bar{v}_h \in R^{n \times n}, \quad v_h^{\text{uniform}}(x,y) \in W^1_{2,h}(\Omega_h^{\text{uniform}}, \Gamma_0) \leftrightarrow \bar{v}_h \in R^{n \times n}, \quad (9)$$

значения которых в одноименных узлах V_{Ω_h} и $V_{\Omega_h^{\mathrm{uniform}}}$ совпадают.

Далее, представим триангуляции Ω_h и $\Omega_h^{\mathrm{uniform}}$ как объединение треугольников $\tau_{h,k}$ и $\tau_{h,k}^{\mathrm{uniform}}$ с одноименными вершинами:

$$\bar{\Omega}_h = \bigcup_{k=1}^{2 \cdot (n+1) \times (n+1)} \bar{\tau}_{h,k}, \qquad \bar{\Omega}_h^{\text{uniform}} = \bigcup_{k=1}^{2 \cdot (n+1) \times (n+1)} \bar{\tau}_{h,k}^{\text{uniform}}.$$
(10)

Тогда

$$(A_h \bar{v}_h, \bar{v}_h)_{R^{n \times n}} = \sum_{k=1}^{2 \cdot (n+1) \times (n+1)} a_k, \qquad (A_h^{\text{uniform}} \bar{v}_h, \bar{v}_h)_{R^{n \times n}} = \sum_{k=1}^{2 \cdot (n+1) \times (n+1)} b_k, \qquad (11)$$

где

$$a_{k} = \int_{\tau_{h,k}} (\nabla v_{h}, \nabla v_{h}) \, dx \, dy \ge 0, \qquad b_{k} = \int_{\tau_{h,k}^{\text{uniform}}} (\nabla v_{h}^{\text{uniform}}, \nabla v_{h}^{\text{uniform}}) \, dx \, dy \ge 0;$$

$$a_{k} = 0 \iff b_{k} = 0,$$

$$(12)$$

и справедливы неравенства:

$$C_{0} = \min_{k, b_{k} \neq 0} \frac{a_{k}}{b_{k}} \leq \frac{(A_{h}\bar{v}_{h}, \bar{v}_{h})_{R^{n \times n}}}{(A_{h}^{\text{uniform}}\bar{v}_{h}, \bar{v}_{h})_{R^{n \times n}}} = \frac{\sum_{k=1}^{2 \cdot (n+1) \times (n+1)} a_{k}}{\sum_{k=1}^{2 \cdot (n+1) \times (n+1)} b_{k}} \leq \max_{k, b_{k} \neq 0} \frac{a_{k}}{b_{k}} = C_{1} \ \forall \ \bar{v}_{h} \in R^{n \times n}.$$
 (13)

Рассмотрим треугольники $\tau_{h,k}$ и $\tau_{h,k}^{\mathrm{uniform}}$ с одноименными вершинами $\{V_{i0,j0},V_{i1,j1},V_{i2,j2}\}$ и $\{V_{i0,j0}^{\mathrm{uniform}},V_{i1,j1}^{\mathrm{uniform}},V_{i2,j2}^{\mathrm{uniform}}\}$, причем $V_{i0,j0}^{\mathrm{uniform}}$ — вершина прямого угла треугольника $\tau_{h,k}^{\mathrm{uniform}}$ с катетами $[V_{i0,j0}^{\mathrm{uniform}},V_{i1,j1}^{\mathrm{uniform}}]$ и $[V_{i0,j0}^{\mathrm{uniform}},V_{i2,j2}^{\mathrm{uniform}}]$ длины h и параллельными осям координат 0X и 0Y соответственно. Определим аффинные преобразования треугольников $\tau_{h,k}$ и $\tau_{h,k}^{\mathrm{uniform}}$ в треугольник $\tau = \{(\lambda,\mu): 0 < \lambda,\mu,\ \lambda + \mu < 1\}$:

$$\begin{pmatrix} x \\ y \end{pmatrix} = V_{i0,j0} + T \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \in \tau_{h,k} \quad \forall \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \in \tau, \quad T = \begin{bmatrix} V_{i1,j1} - V_{i0,j0} & V_{i2,j2} - V_{i0,j0} \end{bmatrix};
\begin{pmatrix} x \\ y \end{pmatrix} = V_{i0,j0}^{\text{uniform}} + T^{\text{uniform}} \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \in \tau_{h,k}^{\text{uniform}} \quad \forall \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \in \tau,
T^{\text{uniform}} = \begin{bmatrix} V_{i1,j1}^{\text{uniform}} - V_{i0,j0}^{\text{uniform}} & V_{i2,j2}^{\text{uniform}} - V_{i0,j0}^{\text{uniform}} \end{bmatrix}.$$
(14)

Кроме функций $v_h(x,y), (x,y) \in \tau_{h,k}$, и $v_h^{\text{uniform}}(x,y), (x,y) \in \tau_{h,k}^{\text{uniform}}$, определенных в (9) и принимающих значения $v_{i0,j0}, v_{i1,j1}, v_{i2,j2}$ в соответствующих вершинах треугольников $\tau_{h,k}$ и $\tau_{h,k}^{\text{uniform}}$, преобразования (14) определяют на треугольнике τ линейную функцию $v^{\tau}(\lambda,\mu)$ по значениям $v^{\tau}(0,0) = v_{i0,j0}, v^{\tau}(1,0) = v_{i1,j1}, v^{\tau}(0,1) = v_{i2,j2}$.

Тогда в интегралах (12) сделаем замены переменных (14):

$$a_{k} = \int_{\tau_{h,k}} (\nabla v_{h}, \nabla v_{h}) \, dx \, dy = \int_{\tau} ((T^{*}T)^{-1} \nabla v^{\tau}, \nabla v^{\tau}) \cdot |\det T| \, d\lambda \, d\mu,$$

$$b_{k} = \int_{\tau_{h,k}^{\text{uniform}}} (\nabla v_{h}^{\text{uniform}}, \nabla v_{h}^{\text{uniform}}) \, dx \, dy$$

$$= \int_{\tau} \left([(T^{\text{uniform}})^{*} \cdot T^{\text{uniform}}]^{-1} \nabla v^{\tau}, \nabla v^{\tau} \right) \cdot |\det T^{\text{uniform}}| \, d\lambda \, d\mu.$$
(15)

Далее, отметим:

- 1) $\nabla v^{\tau}(\lambda,\mu) \equiv \begin{pmatrix} v_{i1,j1} v_{i0,j0} \\ v_{i2,j2} v_{i0,j0} \end{pmatrix}$ постоянный вектор,
- 2) матрица Грамма T^*T векторов $\bar{r}_1 = V_{i1,j1} V_{i0,j0}$ и $\bar{r}_2 = V_{i2,j2} V_{i0,j0}$, угол между которыми обозначим через $\gamma_{h,k}$, симметрична положительно определена:

$$T^*T = \left[\begin{array}{cc} (\bar{r}_1, \bar{r}_1) & (\bar{r}_1, \bar{r}_2) \\ (\bar{r}_2, \bar{r}_1) & (\bar{r}_2, \bar{r}_2) \end{array} \right] \equiv |\bar{r}_1| \cdot |\bar{r}_2| \cdot \left[\begin{array}{cc} |\bar{r}_1|/|\bar{r}_2| & \cos \gamma_{h,k} \\ \cos \gamma_{h,k} & |\bar{r}_2|/|\bar{r}_1| \end{array} \right],$$

имеет положительные собственные значения $0 < \alpha_{h,k} \le \rho_{h,k}$

$$\alpha_{h,k}(T^*T) = \frac{|\bar{r}_1| \cdot |\bar{r}_2|}{2} \left(a + a^{-1} - \sqrt{(a+a^{-1})^2 - 4 \cdot \sin^2 \gamma_{h,k}} \right),$$

$$\rho_{h,k}(T^*T) = \frac{|\bar{r}_1| \cdot |\bar{r}_2|}{2} \left(a + a^{-1} + \sqrt{(a+a^{-1})^2 - 4 \cdot \sin^2 \gamma_{h,k}} \right),$$

$$a = |\bar{r}_1|/|\bar{r}_2|,$$
(16)

- 3) $|\det T| = 2 \cdot S(\tau_{h,k}) \equiv \sin \gamma_{h,k} \cdot |\bar{r}_1| \cdot |\bar{r}_2|$ удвоенная площадь треугольника $\tau_{h,k}$,
- 4) из ортогональности векторов $\bar{r}_1^{\rm uniform}=V_{i1,j1}^{\rm uniform}-V_{i0,j0}^{\rm uniform}$ и $\bar{r}_2^{\rm uniform}=V_{i2,j2}^{\rm uniform}-V_{i0,j0}^{\rm uniform}$ длины h следует, что

$$(T^{\text{uniform}})^* \cdot T^{\text{uniform}} = h^2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad |\det T^{\text{uniform}}| = h^2.$$
 (17)

Из (15), (16) и (17) следует, что

$$\begin{split} a_k &= \int_{\tau_{h,k}} \left(\nabla v_h, \nabla v_h \right) dx \, dy = \left((T^*T)^{-1} \nabla v^\tau, \nabla v^\tau \right) \cdot \frac{|\det T|}{2}, \\ \frac{S(\tau_{h,k})}{\rho_{h,k}(T^*T)} \cdot \left(\nabla v^\tau, \nabla v^\tau \right) &\leq a_k \leq \frac{S(\tau_{h,k})}{\alpha_{h,k}(T^*T)} \cdot \left(\nabla v^\tau, \nabla v^\tau \right), \\ b_k &= \int_{\tau_{h,k}^{\text{uniform}}} \left(\nabla v_h^{\text{uniform}}, \nabla v_h^{\text{uniform}} \right) dx \, dy = \frac{1}{2} \cdot \left(\nabla v^\tau, \nabla v^\tau \right), \end{split}$$

т. е. (это легко получить)

$$c_{h,k} \equiv \frac{\sin \gamma_{h,k}}{d + \sqrt{d^2 - \sin^2 \gamma_{h,k}}} \le \frac{a_k}{b_k} \le \frac{\sin \gamma_{h,k}}{d - \sqrt{d^2 - \sin^2 \gamma_{h,k}}} \equiv c_{h,k}^{-1},$$

$$d = (a + a^{-1})/2, \qquad a = |\bar{r}_1|/|\bar{r}_2|.$$
(18)

Очевидно, что если мы предположим, что существуют положительные постоянные C_0^{\sin} , C_0^{side} и C_1^{side} , независящие от h и такие, что для всех треугольников $\tau_{h,k} \in \Omega_h$ справедливы неравенства:

А.М. Мацокин 169

$$0 < C_0^{\sin} \le \sin \gamma_{h,k} \le 1, \qquad 1 \le d \equiv \left(\frac{|\bar{r}_1|}{|\bar{r}_2|} + \frac{|\bar{r}_2|}{|\bar{r}_1|}\right)/2 \le C_1^{\text{side}},$$
 (19)

то

$$c_{h,k} \equiv \frac{\sin \gamma_{h,k}}{d + \sqrt{d^2 - \sin^2 \gamma_{h,k}}} \ge \min_{\substack{C_0^{\sin} \le s \le 1, \\ 1 < d < C_s^{\text{side}}}} \frac{s}{d + \sqrt{d^2 - s^2}} \ge \frac{C_0^{\sin}}{2 \cdot C_1^{\text{side}}} \equiv C_0.$$
 (20)

Тогда в (13)

$$C_0 \le \frac{(A_h \bar{v}_h, \bar{v}_h)_{R^{n \times n}}}{(A_h^{\text{uniform}} \bar{v}_h, \bar{v}_h)_{R^{n \times n}}} \le C_1 \ \forall \bar{v}_h \in R^{n \times n}, \tag{21}$$

 $C_0=C_0^{\sin}/(2\cdot C_1^{\mathrm{side}})$ и $C_1=C_0^{-1}$ — постоянные спектральной эквивалентности матриц A_h и A_h^{uniform} .

4. Вычислительный эксперимент

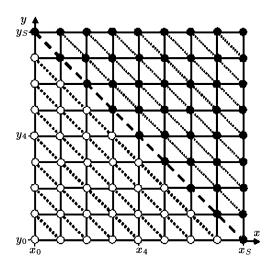
На единичном квадрате $\Omega = \{(x,y): 0 < x,y < 1\}$ построим триангуляцию $\Omega_h^{\mathrm{uniform}}$ с множеством сеточных узлов:

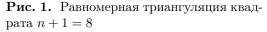
$$V_{\Omega_h^{\text{uniform}}} = \{V_{i,j}^{\text{uniform}} = (x_i = i \cdot h, y_j = j \cdot h)\}_{i,j=0}^{n+1}, \qquad h = 1/(n+1),$$
 (22)

и множеством треугольников

$$\bar{\Omega}_{h}^{\text{uniform}} = \bigcup_{i,j=1}^{n} (\bar{\tau}_{h,(i,j)}^{\text{uniform},0} \cup \bar{\tau}_{h,(i,j)}^{\text{uniform},1}),$$

$$\bar{\tau}_{h,(i,j)}^{\text{uniform},0} = \Delta(V_{i,j}^{\text{uniform}}, V_{i+1,j}^{\text{uniform}}, V_{i,j+1}^{\text{uniform}}), \quad \bar{\tau}_{h,(i,j)}^{\text{uniform},1} = \Delta(V_{i+1,j+1}^{\text{uniform}}, V_{i,j+1}^{\text{uniform}}, V_{i+1,j}^{\text{uniform}}).$$
(23)





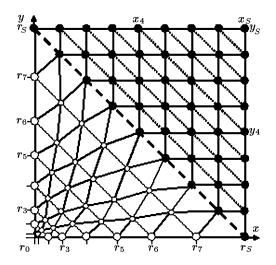


Рис. 2. Сгущение равномерной триангуляции квадрата $n+1=8, \, \mu=1/2$

Для вещественного числа $\mu \in (0,1)$ определим функцию r(x) и набор ее значений $\{r(x_i)\}_{i=0}^{n+1}$ [4, с. 273]:

$$r(x) = x^{1/\mu}, \quad x \in [0, 1];$$

 $0 = r_0 \equiv r(x_0) < r_1 \equiv r(x_1) < \dots < r_i \equiv r(x_i) < \dots < r_{n+1} \equiv r(x_{n+1}) = 1.$ (24)

Каждую диагональ, соединяющую узлы $(x_i,0) \leftrightarrow (0,y_i)$, равномерной сетки преобразуем (сдвигом и сжатием) в диагональ, соединяющую точки $(r_i,0) \leftrightarrow (0,r_i)$, $i=1,\ldots,n$. В результате получим топологически эквивалентную триангуляцию со сгущением к точке (0,0).

Для приведенного примера параметры сетки и постоянные неравенств

$$C_0 = \min_{k, b_k \neq 0} \frac{a_k}{b_k} \le \frac{(A_h \bar{v}_h, \bar{v}_h)_{R^{n \times n}}}{(A_h^{\text{uniform}} \bar{v}_h, \bar{v}_h)_{R^{n \times n}}} \le \max_{k, b_k \neq 0} \frac{a_k}{b_k} = C_1, \tag{25}$$

где

$$a_{k} = \int_{\tau_{h,k}} (\nabla v_{h}, \nabla v_{h}) \, dx \, dy \ge 0, \qquad b_{k} = \int_{\tau_{h,k}^{\text{uniform}}} (\nabla v_{h}^{\text{uniform}}, \nabla v_{h}^{\text{uniform}}) \, dx \, dy \ge 0;$$

$$a_{k} = 0 \iff b_{k} = 0,$$

$$(26)$$

приведены в таблице 1.

Таблица 1

n+1	$h_{ m max}/h_{ m min}$	\sin_{\min}	C_0	C_1	C_1/C_0
8	11.31	0.60	0.3333	3.0000	9.0
16	22.63	0.60	0.3333	3.0000	9.0
32	45.25	0.60	0.3333	3.0000	9.0
64	90.51	0.60	0.3333	3.0000	9.0
128	181.0	0.60	0.3333	3.0000	9.0
256	362.0	0.60	0.3333	3.0000	9.0
512	724.1	0.60	0.3333	3.0000	9.0

Таблица 2

n+1	$1/\mu$	C_0	C_1	C_1/C_0
	1.0	1.0	1.0	1.00
	1.5	0.5469	1.8284	3.34
8 – 512	2.0	0.3333	3.0000	9.00
	2.5	0.2147	4.6569	21.69
	3.0	0.1429	7.0000	49.00

Приведенные в табл. 1 результаты подтверждают независимость оценки числа обусловленности от количества n+1 узлов сетки по каждой переменной, если $\mu=1/2$.

В табл. 2 сравниваются постоянные C_0 и C_1 при разных μ .

Приведенные в табл. 2 результаты подтверждают независимость оценки числа обусловленности от количества n+1 узлов сетки по каждой переменной, для каждого $0<\mu$, но оценка зависит от показателя сгущения (вида особенности) μ .

Литература

- 1. **Мацокин А.М.** Вариационно-разностный метод решения эллиптических уравнений в круге. Новосибирск, 1975. (Препринт / АН СССР. Сиб. отд-ние. ВЦ; 13).
- 2. **Кузнецов Ю.А.** Вычислительные методы в подпространствах // Вычислительные процессы и системы. Вып. 2.—М.: Наука, 1985.—С. 264–350.
- 3. **Оганесян Л.А., Ривкинд В.Я., Руховец Л.А.** Вариационно-разностные методы решения эллиптических уравнений. Ч. I и II // Дифференциальные уравнения и их приложения. Вып. 5. Вильнюс, Пяргале, 1973. Вып. 8. Вильнюс, Пяргале, 1974.
- 4. **Оганесян Л.А., Руховец Л.А.** Вариационно-разностные методы решения эллиптических уравнений. Ереван: Изд-во АН АрмССР, 1979.
- 5. **Дьяконов Е.Г.** Минимизация вычислительной работы: Асимптотически оптимальные алгоритмы для эллиптических задач. М.: Наука, 1989.

Статья поступила 4 мая 2012 г., в окончательном варианте 11 сентября 2012 г.