2011. Tom 52. № 2

Март – апрель

C. 390 - 395

УДК 539.26:546.93:546.97:546.59

КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ НОВЫХ ДВОЙНЫХ КОМПЛЕКСНЫХ СОЛЕЙ $[M(NH_3)_5Br][AuBr_4]_2 \cdot H_2O$, где M = Ir, Rh, U КОМПЛЕКСНОЙ СОЛИ $[Ir(NH_3)_5Br]Br_2$

© 2011 П.Е. Плюснин^{1,2}*, Е.Ю. Семитут^{1,2}, И.А. Байдина¹, С.В. Коренев^{1,2}

Статья поступила 28 декабря 2009 г.

Методом РСА определены кристаллические структуры двойных комплексных солей [М(NH₃)₅Br][AuBr₄]₂· H₂O (M = Ir, Rh). Соединения кристаллизуются в триклинной сингонии, пр. гр. P-1, Z = 4. Кристаллографические характеристики [Ir(NH₃)₅Br][AuBr₄]₂· H₂O: a = 8,2982(3), b = 15,3045(4), c = 17,4378(6) Å, α = 73,064(1), β = 88,938(1), γ = 86,221(1)°, V = 2113,95(12) ų, $d_{\text{выч}}$ = 4,419 г/см³, R = 0,0469; [Rh(NH₃)₅Br][AuBr₄]₂· H₂O: a = 8,2855(2), b = 15,2881(3), c = 17,4053(4) Å, α = 73,015(1), β = 88,913(1), γ = 86,267(1)°, V = 2104,08(8) ų, $d_{\text{выч}}$ = 4,165 г/см³, R = 0,0480. Установлена кристаллическая структура [Ir(NH₃)₅Br]Br₂. Соединение кристаллизуется в ромбической сингонии, пр. гр. Pnma, Z = 4. Кристаллографические характеристики: a = 13,8521(3), b = 10,8570(2), c = 6,9908(1) Å, V = 1049,31(3) ų, $d_{\text{выч}}$ = 3,273 г/см³, R = 0,0127.

Ключевые слова: иридий, родий, золото, рентгеноструктурный анализ, двойные комплексные соли.

Ультрадисперсные частицы золота, нанесенные на оксидные носители, являются отличными катализаторами в реакциях низкотемпературного окисления СО при наличии или отсутствии водорода [1]. Кроме того, они проявляют каталитическую активность в реакции конверсии СО с водяным паром [2] и в окислении углеводородов [3]. В настоящее время возрастает интерес к полиметаллическим порошкам, содержащим в своем составе золото. При такой комбинации можно получить синергетический эффект, приводящий к увеличению активности или селективности катализатора. Двойные комплексные соли являются перспективными предшественниками для получения полиметаллических порошков и композитов, обладающих каталитической активностью в различных процессах.

Ранее нами был получен ряд двойных комплексных солей (ДКС) с общей формулой $[M(NH_3)_5Cl][AuCl_4]Cl \cdot nH_2O$, где M=Ir, Rh, Ru, Cr, $n=0\div 1$ [4, 5]. Установлены кристаллические структуры соединений и изучены их термические свойства. Представлялось интересным расширить круг ДКС, содержащих в своем составе квадратные анионы $[AuHal_4]^-$, заменив в комплексном анионе Cl на Br, определить структуры этих соединений, а также посмотреть, как скажется замена галогенид-иона на стехиометрию и структурные характеристики образующихся ДКС. В дополнение к нашим исследованиям ДКС мы провели PCA комплекса $[Ir(NH_3)_5Br]Br_2$, исходного при получении ДКС, структура которого не была изучена.

-

¹Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

²Новосибирский государственный университет

^{*} E-mail: plus@niicc.nsc.ru

Таблица 1 Кристаллографические данные и условия дифракционного эксперимента для [M(NH₃)₅Br][AuBr₄]₂· H_2O (M = Rh, Ir) u [Ir(NH₃)₅Br]Br₂

(M = Kn, Ir) u [Ir(NH3)5Br3Br2											
Соединение	$[Rh(NH_3)_5Br][AuBr_4]_2 \cdot H_2O$	$[Ir(NH_3)_5Br][AuBr_4]_2 \cdot H_2O$	[Ir(NH ₃) ₅ Br]Br ₂								
Молек. вес	1319,14	1408,45	517,10								
Температура, К	90(2)	100(2)	296(2)								
Длина волны, Å	0,71073	0,71073	0,71073								
Сингония	Триклинная	Триклинная	Ромбическая								
Пр. группа	<i>P</i> -1	<i>P</i> -1	Pnma								
a, Å	8,2855(2)	8,2982(3)	13,8251(3)								
b, Å	15,2881(3)	15,3045(4)	10,8570(2)								
c, Å	17,4053(4)	17,4378(6)	6,99080(10)								
α, град.	73,0150(10)	73,0640(10)									
β, град.	88,9130(10)	88,9380(10)									
ү, град.	86,2670(10)	86,2210(10)									
V , \mathring{A}^3	2104,08(8)	2113,95(12)	1049,31(3)								
Z	4	4	4								
$d_{\text{выч}}, \Gamma/\text{cm}^3$	4,165	4,419	3,273								
Коэффициент поглощения, мм ⁻¹	31,773	37,132	24,095								
F(000)	2312	2432	928								
Размер кристалла, мм	0,35×0,08×0,02	0,13×0,11×0,01	0,10×0,08×0,06								
Диапазон сбора данных по θ , град.	от 2,11 до 32,20	от 1,56 до 31,45	от 2,95 до 29,92								
Диапазон h, k, l	$-12 \le h \le 11$,	$-11 \le h \le 12$,	$-16 \le h \le 19$,								
	$-14 \le k \le 21,$	$-14 \le k \le 22,$	$-15 \le k \le 11,$								
	$-23 \le l \le 23$	$-24 \le l \le 25$	$-9 \le l \le 9$								
Число измеренных рефлексов	20924	24426	9041								
Число независимых рефлексов	10894	11463	1592								
_	[R(int) = 0.0564]	[R(int) = 0.0546]	[R(int) = 0.0203]								
Полнота сбора данных по $\theta = 25,00^{\circ}$	96,2 %	98,7 %	99,9 %								
Макс. и мин. пропускание	0,5551 и 0,0316	0,6855 и 0,0892	0,3258 и 0,1967								
Метод уточнения	Полноматричный МНК по F^2	Полноматричный МНК по F^2	Полноматричный МНК по F^2								
Число рефлексов / огр. / пара- метров	10894 / 0 / 342	11463 / 0 / 342	1592 / 0 / 68								
S -фактор по F^2	0,958	0,945	1,015								
R -фактор [$I > 2\sigma(I)$]	R1 = 0.0480, wR2 = 0.1209	R1 = 0.0469, wR2 = 0.1014	R1 = 0.0127, wR2 = 0.0277								
<i>R</i> -фактор (все данные)	R1 = 0.0727, wR2 = 0.1306	R1 = 0.0801, wR2 = 0.1122	R1 = 0.0152, wR2 = 0.0282								
Коэффициент экстинкции	0,00014(4)	0,00014(2)	0,00062(7)								

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходными соединениями для получения ДКС служили $[M(NH_3)_5Br]Br_2$ (M = Rh, Ir), синтезированные по известным методикам [6] и H[AuBr₄]. Раствор H[AuBr₄] заданной концентрации получали растворением золота (99,99 %) в смеси концентрированных HNO₃ и HBr с последующим упариванием с HBr и водой.

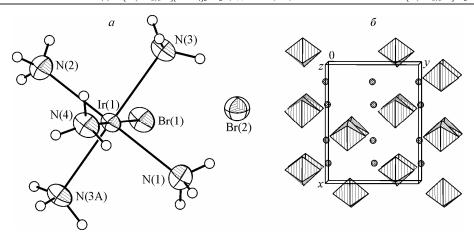
Таблица 2 Частоты колебаний (см $^{-1}$) в ИК спектрах исходных [M(NH $_3$) $_5$ Br]Br $_2$ и синтезированных [M(NH $_3$) $_5$ Br][AuBr $_4$] $_2$ ·H $_2$ O

Соединение	ν(H ₂ O)	ν(NH ₃)	δ(H ₂ O)	$\delta_d(NH_3)$	$\delta_s(NH_3)$	$\rho_r(NH_3)$	ν(MN)	δ(NMN)	ν(AuBr)	ν(MBr)
[Ir(NH ₃) ₅ Br]Br ₂	_	3266	_	1578	1338	863	493	272	_	207
		3184					483			203
							473			
$[Ir(NH_3)_5Br][AuBr_4]_2 \cdot H_2O$	3610	3263	1601	1566	1351	837	471	266	251	208
	3538	3194							247	
$[Rh(NH_3)_5Br]Br_2$		3251		1553	1307	842	502	288	_	208
		3159					485			204
							469			
$[Rh(NH_3)_5Br][AuBr_4]_2 \cdot H_2O$	3609	3270	1599	1564	1320	811	490	275	251	208
	3538	3180					478		247	
							463			

Монокристаллы [Ir(NH₃)₅Br]Br₂ для PCA получали медленной кристаллизацией из 0,005 М водного раствора. Синтез монокристаллических образцов ДКС [M(NH₃)₅Br][AuBr₄]₂·H₂O (M = Ir, Rh) проводили следующим образом. К 100 мл 0,005 М раствора [M(NH₃)₅Br]Br₂ при перемешивании добавляли 2,6 мл 0,382 М раствора H[AuBr₄] (мольное соотношение М:Аи составляет 1:2). Через несколько дней на стенках и поверхности раствора появлялись коричневые с золотистым отливом кристаллы. Из общей массы отбирали монокристалл для PCA, остальные использовали для проведения РФА и ИК спектроскопии.

Параметры элементарных ячеек и экспериментальные интенсивности для расшифровки кристаллических структур измерены при комнатной температуре на автоматическом четырех-кружном дифрактометре Bruker-Nonius X8 Арех, оснащенном двухкоординатным ССD-детектором (Мо K_{α} -излучение, графитовый монохроматор). Кристаллографические характеристики исследованных соединений и параметры эксперимента приведены в табл. 1. Структуры расшифрованы прямым методом и уточнены в анизотропно-изотропном (для H) приближении, атомы водорода заданы геометрически. Все расчеты выполнены по комплексу программ SHELX-97 [7].

Рентгенофазовый анализ проводили на дифрактометре ДРОН-SEIFERT-RM4 (CuK_{α} -излучение, графитовый монохроматор на отраженном пучке, сцинтилляционный детектор с амплитудной дискриминацией). Образцы готовились нанесением спиртовой суспензии на полированную сторону стандартной кварцевой кюветы. В качестве внешнего эталона использовали образец поликристаллического кремния (a = 5,4309 Å), приготовленный аналогичным образом. Регистрацию дифрактограмм проводили в пошаговом режиме, в диапазоне углов 2θ от 5 до 60° .

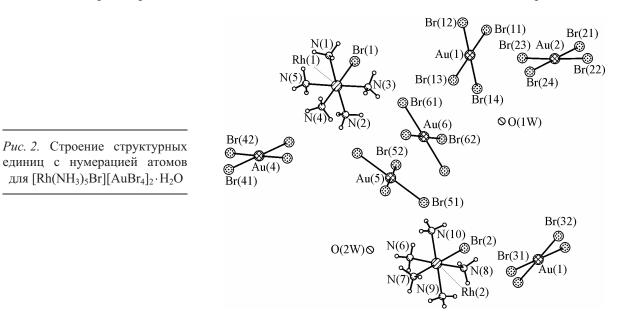

Однофазность полученных соединений устанавливали путем индицирования порошковых рентгенограмм по аналогии с дифрактограммами комплексов, изученных методом РСА.

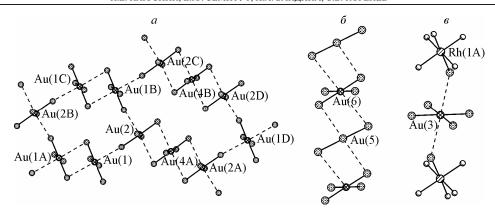
Элементный (C, H, N) анализ проводили на приборе Euro EA 3000. Для [Rh(NH₃)₅Br]· \cdot [AuBr₄]· \cdot H₂O найдено/вычислено, %: N (5,2±0,1/5,3); H (1,4±0,1/1,3); для [Ir(NH₃)₅Br][AuBr₄]· \cdot H₂O найдено/вычислено, %: N (4,9±0,1/5,0); H (1,3±0,1/1,2).

ИК спектры исследуемых соединений регистрировали на ИК Фурье-спектрометрах Scimitar FTS 2000 и Vertex 80 в области 4000— $80~\rm cm^{-1}$. Образцы готовили в виде таблеток, запрессованных с KBr (4000— $400~\rm cm^{-1}$) и полиэтиленом (600— $80~\rm cm^{-1}$). Значения частот колебаний в ИК спектрах с отнесением полос приведены в табл. 2.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Структура [Ir(NH₃)₅Br]Br₂ построена из комплексных катионов [Ir(NH₃)₅Br]²⁺ и анионов Br⁻ (рис. 1). Атом металла имеет слегка искаженную октаэдрическую координацию, образован-




 $Puc.\ 1.$ Строение структурных единиц с нумерацией атомов (a) и общая упаковка (b) в кристалле $[Ir(NH_3)_5Br]Br_2$

ную пятью молекулами аммиака и одним атомом брома. Длина связи Ir—Br составляет 2,5036(4) Å. Средние расстояния Ir—N в экваториальной плоскости равны 2,083 Å и незначительно отличаются от расстояния в *транс*-положении к атому брома — 2,075(4) Å. Валентные углы отклоняются от идеальных значений не более чем на 1,5°. Общий вид кристаллической структуры в направлении оси Z показан на рис. 1, δ . В кристалле ионы связаны водородными связями N—H...Br (минимальные расстояния H...Br и N...Br 2,72 и 3,49 Å соответственно).

Двойные комплексные соли. В результате проведенного рентгеноструктурного исследования было установлено, что полученные бромидные ДКС имеют состав [M(NH₃)₅Br][AuBr₄]₂ \cdot H₂O (M = Rh, Ir). В отличие от исследованных ранее хлоридных солей с соотношением металлов 1:1 в бромидных солях соотношение металлов М:Аи составляет 1:2. Полученные соли Rh и Ir изоструктурны, поэтому описание структуры приведено только для комплексного соединения родия.

Структура построена из комплексных катионов $[Rh(NH_3)_5Br]^{2+}$, анионов $[AuBr_4]^-$ и молекул кристаллизационной воды. В структуре два кристаллографически независимых катиона Rh, не имеющих элементов симметрии, и шесть независимых анионов Au. Строение структурных единиц с нумерацией атомов показано на рис. 2. Координационный полиэдр Rh — слабо искаженный октаэдр со средним значением связей Rh—Br 2,488 Å. Связи Rh—N в *транс*-поло-

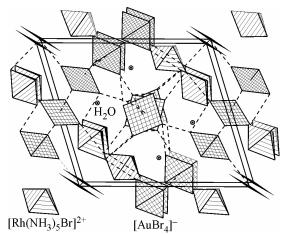


Рис. 3. Дополнительные контакты атомов золота для комплексных анионов [AuBr₄]

жении к Br (ср. 2,058 Å) на 0,02 Å короче экваториальных со средним значением 2,079 Å. Валентные углы на атоме Rh отклоняются от 90° не более чем на 2,7°. Из шести независимых анионов Au четыре обладают центром симметрии. Расстояния Au—Br в координационных квадратах лежат в узком интервале 2,406—2,446 (ср. 2,427) Å, отклонения в валентных углах от идеальных 90° не превышают 2°. Плоскости координационных квадратов анионов золота поразному ориентированы в элементарной ячейке. Квадратная координация атома золота во всех анионах [AuBr₄] дополняется до бипирамидальной (4+2) контактами с атомами Br соседних комплексов (рис. 3, a—a); для атомов Au(1, 2, 4—6) это атомы Br, принадлежащие соседним анионам золота, для атома Au(3) дополняющие координацию атомы Br принадлежат комплексным катионам родия. Дополнительные контакты Au…Br имеют следующие значения: для Au(1) — 3,516 и 3,418 Å, для Au(2) — 3,299 и 3,561 Å; для центросимметричных комплексов Au(3) — 3,784, Au(4) — 3,614, Au(5) — 3,774, Au(6) — 3,885 Å. Полученные геометрические характеристики комплексных ионов согласуются с литературными данными [8—10].

Общая упаковка структурных единиц в кристалле вдоль оси X приведена на рис. 4. В структуре условно можно выделить слои только из анионов Au (см. рис. 3, a) с расстояниями Au...Au 3,966—5,816 Å и смешанные катион-анионные слои, в которых расстояния Au...Rh 4,852—6,342 Å. Комплексные анионы Au(5) и Au(6), находящиеся в смешанных слоях, упакованы в стопки вдоль кратчайшего направления X с расстоянием Au...Au 4,143 Å (см. рис. 3, δ). В анионных слоях можно отметить кратчайший межмолекулярный контакт Br...Br 3,81 Å. В структурах хлоридных ДКС, имеющих также слоистый характер, расстояния Au...Au в анионных слоях составляют 6,836 и 7,794 Å.

Молекулы кристаллизационной воды, входящие в состав бромидных ДКС, образуют водородные связи типа О—Н...Вr и N—Н...О, имеющие минимальные оценки 3,50 и 2,88 Å. В от-

личие от хлоридных ДКС молекулы воды не участвуют в дополнительной координации Au.

Анализ ИК спектров исходных соединений и синтезированных ДКС показал, что их спектры в целом подобны, и это хорошо согласуется со структурными данными. Во всех спектрах наблюдаются полосы поглощения, соответствующие колебаниям координированных NH₃-групп. В спектрах ДКС наблюдаются полосы поглощения, характерные для кристаллизационной воды. Значения частот колебаний в ИК спектрах ДКС хорошо

Puc. 4. Общая упаковка структурных единиц в кристалле [Rh(NH₃)₅Br][AuBr₄]₂·H₂O

согласуются с литературными данными для комплексных соединений, содержащих в своем составе катионы $[Rh(NH_3)_5Br]^{2+}$ и анионы $[AuBr_4]^-$ [11, 12].

Координаты и тепловые параметры атомов в кристаллических структурах соединений депонированы в Немецком депозитарии научной информации в Карлсруэ (Fachinformationszentrum Karlsruhe, B-76344 Eggenstein-Leopoldshafen, Germany; fax: (+49)7247-808-666; e-mail crysdata@fiz-karlsruhe.de) [Rh(NH₃)₅Br][AuBr₄]₂·H₂O под номером CSD 421205, [Ir(NH₃)₅Br]× \times [AuBr₄]₂·H₂O под номером CSD 421206, [Ir(NH₃)₅Br]Br₂ под номером CSD 421299.

Таким образом, в настоящей работе проведено рентгеноструктурное исследование новых ДКС состава [M(NH₃)₅Br][AuBr₄]₂· H₂O (M = Rh, Ir). Установлено, что замена хлорид-ионов на бромид-ионы при синтезе приводит к изменению стехиометрии образующихся ДКС. В отличие от исследованных ранее хлоридных солей с соотношением металлов 1:1 и наличием внешнесферных хлорид-ионов, в бромидных солях соотношение металлов М:Аи составляет 1:2 и отсутствуют внешнесферные бромид-ионы. Квадратная координация атома золота во всех анионах [AuBr₄] дополняется до бипирамидальной (4+2) контактами с атомами Br соседних комплексов. Молекулы кристаллизационной воды, входящие в состав бромидных ДКС, образуют водородные связи типа О—Н...Вr и N—Н...О, имеющие минимальные оценки 3,50 и 2,88 Å, однако в отличие от хлоридных ДКС молекулы воды не участвуют в дополнительной координации Au.

Авторы статьи выражают благодарность к.х.н. Е.В. Пересыпкиной за съемку монокристаллов на дифрактометре Bruker-Nonius X8 Арех, к.ф.-м.н. Л.А. Шелудяковой и Н.И. Алферовой за съемку ИК спектров.

Работа выполнена при частичной поддержке гранта Российского фонда фундаментальных исследований 08-03-00603-а и Государственного контракта № П960 Федеральной целевой программы "Научные и научно-педагогические кадры инновационной России".

СПИСОК ЛИТЕРАТУРЫ

- 1. Landon P., Ferguson J., Solsona B.E. et al. // Chem. Comm. 2005. 27. P. 3385 3387.
- 2. Breen J., Burch R., Gomez-Lopez J. et al. // Proc. Fuel Cell Symp., San Antonio, USA, November 2004.
- 3. Hughes M.D., Xu Y.-J., Jenkins P. et al. // Nature. 2005. 437. P. 1131 1135.
- 4. *Плюснин П.Е.*, *Байдина И.А.*, *Шубин Ю.В.*, *Коренев С.В.* // Журн. неорган. химии. 2005. **50**, № 12. С. 1959 1965.
- 5. Плюснин П.Е., Байдина И.А., Шубин Ю.В., Коренев С.В. // Журн. неорган. химии. 2008. 53, № 11. С. 1844 1852.
- 6. *Синтез* комплексных соединений металлов платиновой группы / Ред. И.И. Черняев М.: Наука, 1964.
- 7. Sheldrick G.M. SHELX-97, Release 97-1. Germany, University of Göttingen, 1997.
- 8. Svans R.S., Hopcus E.A., Bordner J., Schreiner A.F. // J. Cryst. Mol. Struct. 1973. 3. P. 235 245.
- 9. *Макотченко Е.В., Байдина И.А., Плюснин П.Е.* // Журн. структур. химии. 2007. **48**, № 2. С. 282 288.
- 10. *Von Strähle J., Gelinek J., Kölmel M.* // Z. Anorg. Allg. Chem. 1979. **456**. S. 241 260.
- 11. Bee M.W., Kettle S.F.A., Powell D.B. // Spectrochim. Acta. 1974. **30A**. P. 139 150.
- 12. *Харитонов Ю.Я., Князева Н.А., Мазо Г.Я. и др.* // Журн. неорган. химии. 1971. **XVI**, вып. 7. С. 1974 1980.