СИБИРСКОЕ ОТДЕЛЕНИЕ российской академии наук

НАУЧНЫЙ ЖУРНАЛ

ГЕОЛОГИЯ И ГЕОФИЗИКА

Геология и геофизика, 2017, т. 58, № 12, с. 1886—1914

ПЕТРОЛОГИЯ, ГЕОХИМИЯ И МИНЕРАЛОГИЯ

УДК 551.71

ФОРМИРОВАНИЕ КОНТИНЕНТАЛЬНОЙ КОРЫ САРМАТИИ В АРХЕЕ С.Б. Лобач-Жученко¹, М.В. Рыборак², Т.Е. Салтыкова³, С.А. Сергеев^{3,4}, К.И. Лохов^{3,4}, Е.М. Боброва², В.В. Сукач⁵, С.Г. Скублов^{1,6}, Н.Г. Бережная³, А.Ю. Альбеков²

¹Институт геологии и геохронологии докембрия РАН, 199034, Санкт-Петербург, наб. Макарова, 2, Россия

²Воронежский государственный университет, 394018, Воронеж, Университетская пл., 1, Россия

³Всероссийский научно-исследовательский геологический институт им. А.П. Карпинского,

199106, Санкт-Петербург, Средний просп., 74, Россия

⁴Институт наук о Земле Санкт-Петербургского государственного университета, 199034, Санкт-Петербург, Университетская наб., 7/9, Россия

⁵Институт геохимии, минералогии и рудообразования им. Н.П. Семененко Национальной академии наук Украины, 03680, Киев, просп. Палладина, 34, Украина

⁶ Санкт-Петербургский горный университет, 199106, Санкт-Петербург, Васильевский остров, 21-я линия, 2, Россия

Синтез новых U-Pb изотопных данных (SHRIMP-II), полученных нами для Воронежского кристаллического массива (ВКМ), и опубликованных изотопных данных для архея Украинского щита (УЩ) позволил обосновать основные этапы эволюции коры Сарматии — фрагмента фундамента Восточно-Европейской платформы. Новые данные получены для 20 индикативных пород Курского блока (КБ) ВКМ.

Проведено сопоставление эо- и палеоархейских пород КБ ВКМ (мафиты и тоналиты обоянского комплекса), ортогнейсов Днестровско-Бугской провинции УЩ (побужский гранулитовый комплекс), тоналитов и мафитов Приазовской провинции УЩ, которое свидетельствует о присутствии в Сарматии древнейшей континентальной коры, сформированной в интервале 3.75—3.60 млрд лет. Широкое распространение палеоархейских образований в строении нижних частей коры ВКМ следует из присутствия ксеногенного палеоархейского циркона в более молодых интрузиях.

В мезоархее (3.2—3.0 млрд лет) восточная часть Сарматии — КБ ВКМ, Приазовская и Среднеприднепровская (СПП) провинции УЩ — представляла собой единую гранит-зеленокаменную область. Датированы два этапа кислого магматизма — 3.15—3.10 млрд лет (вулканиты зеленокаменных поясов и ТГГ—магматизм ВКМ и УЩ) и 3.05—3.00 млрд лет (вулканиты и ТТГ на УЩ и граниты КБ ВКМ). Магматические и тектонометаморфические процессы (2.95—2.85 млрд лет) установлены на всей восточной части Сарматии.

Активные эндогенные события, происходившие 2.85—2.80 млрд л. н., свидетельствуют о тектонической дифференциации территории. На большей части КБ, в Приазовье и в Побужье, имели место основной и кислый магматизм, деформации, метаморфизм и ультраметаморфизм в условиях амфиболитовой и гранулитовой фаций; образование ультраметаморфических гранитов за счет более древнего (3.0—3.5 млрд лет) протолита. Иное тектоническое положение имела СПП УЩ, где 2.81—2.86 млрд л. н. происходило формирование зрелых осадков, внедрение постскладчатых гранитов.

Из геохронологических данных следует, что определяющая часть континентальной коры Сарматии была образована в мезоархее как за счет добавления ювенильного материала, так и в результате переработки более древних пород.

Неоархейские события (2.8—2.5 млрд лет) в Сарматии проявлены слабо, что принципиально отличает ее от второго крупного фрагмента фундамента Восточно-Европейской платформы — Балтии, где эндогенные процессы в интервале 2.65—2.75 млрд лет являлись определяющими в ее строении.

Архей, U-Pb SIMS SHRIMP-II метод, континентальная кора, Сарматия, Украинский щит, Воронежский кристаллический массив.

THE ARCHEAN FORMATION OF THE SARMATIAN CONTINENTAL CRUST

S.B. Lobach-Zhuchenko, M.V. Ryborak, T.E. Saltykova, S.A. Sergeev, K.I. Lokhov, E.M. Bobrova, V.V. Sukach, S.G. Skublov, N.G. Berezhnaya, and A.Yu. Al'bekov

Based on our new U–Pb isotope data (SHRIMP-II) for the Voronezh Crystalline Massif (VCM) and on published U–Pb data for the Archean rocks of the Ukrainian Shield (USh), we have substantiated the main stages

© С.Б. Лобач-Жученко[∞], М.В. Рыборак, Т.Е. Салтыкова, С.А. Сергеев, К.И. Лохов, Е.М. Боброва, В.В. Сукач, С.Г. Скублов, Н.Г. Бережная, А.Ю. Альбеков, 2017 of the Archean evolution of the Sarmatian crust, a fragment of the basement of the East European Platform. New data have been obtained for 20 indicative rocks of the Kursk block (KB) of the VCM.

We compared the Eoarchean and Paleoarchean KB rocks (mafic rocks and tonalites of the Oboyan' complex), orthogneisses of the USh Dniester–Bug province (Bug granulite complex), and tonalites and mafic rocks of the USh Azov Province and have established the existence of ancient continental crust (3.75–3.60 Ga) in Sarmatia. The presence of Paleoarchean xenogenic zircons in younger intrusions indicates a wide spread of Paleoarchean rocks in the deep VCM crust section.

In the Mesoarchean (3.2–3.0 Ga), eastern Sarmatia (KB and Azov and Middle Dnieper provinces) was a single granite–greenstone terrain. Two stages of felsic magmatic activity have been dated: 3.15–3.10 Ga (volcanics in the greenstone belts and tonalite–trondhjemite granites in the VCM and USh) and 3.05–3.00 Ga (volcanics and tonalite–trondhjemite granites in the USh and granites in the VCM KB). Magmatic and tectono-metamorphic processes (2.95–2.85 Ga) have been established throughout the eastern part of Sarmatia.

The latest Mesoarchean endogenic activity (2.85–2.80 Ga) testifies to the tectonic differentiation of the area. Mafic and felsic magmatism, deformations, metamorphism, and ultrametamorphism under amphibolite and granulite facies conditions took place in the most part of the KB and in the Azov and Bug areas. It is shown that ultrametamorhic granites formed from an ancient (3.0–3.5 Ga) protolith. The USh Middle Dnieper province had a different tectonic position. Here, intrusion of post-tectonic granites and formation of mature sediments proceeded at 2.81–2.86 Ga.

Our geochronological data show that most of the Sarmatian continental crust formed in the Mesoarchean as a result of both the intrusion of juvenile material and the reworking of the older protolith rocks.

Neoarchean events (2.8–2.5 Ga) are weakly expressed in Sarmatia in contrast to Baltia, another large fragment of the East European Platform basement, where endogenic processes at 2.65–2.75 Ga were the major crust-forming geologic events.

Archean, U–Pb SIMS SHRIMP-II method, continental crust, Sarmatia, Ukrainian Shield, Voronezh Crystalline Massif

введение

Сарматия — один из трех сегментов фундамента Восточно-Европейской платформы [Bogdanova, 1991], который при образовании Днепровско-Донецкой впадины разделился на Воронежский кристаллический массив (ВКМ) и Украинский щит (УЩ) (рис. 1, *a*). ВКМ состоит из Брянского, Курского (КБ) и Хоперского блоков; архейские образования принимают участие в строении КБ (см. рис. 1, *б*) [Чернышов и др., 1997]. На УЩ выделяется ряд провинций, в которых (за исключением Волынской и Среднеприднепровской) развиты и архейские, и протерозойские породы. Волынская провинция сложена в основном протерозойскими, а Среднеприднепровская (СПП) — преимущественно архейскими комплексами (рис. 2).

Представление о геологическом строении ВКМ базируется на изучении скважин и геофизических данных, а для УЩ — по редким обнажениям и результатам геофизических исследований. В этой связи особое значение приобретают геохронологические данные.

Сарматия сложена полиметаморфическими комплексами, датирование которых наиболее надежно и информативно при применении высокоразрешающих изотопных методов. Для Украины в последние годы выполнены определения U-Pb возраста циркона методом SIMS [Самсонов и др., 1993; Бибикова и др., 2008, 2010, 2013; Бобров и др., 2010; Лобач-Жученко и др., 2013, 2014, 2016; Балтыбаев и др., 2014; Lobach-Zhuchenko et al., 2014, 2016; Claesson et al., 2015]. Для архея BKM данные имелись только для двух проб [Лохов и др., 20096]. В данной работе приведены результаты определения U-Pb изотопного возраста 18 объектов BKM на основе 275 определений циркона (SHRIMP-II), проведенных в связи с составлением государственных геологических карт м-ба 1:1 000 000 [Салтыкова, Лохов, 2007].

Задачей настоящей работы является анализ как новых геохронологических данных для ВКМ, так и ранее полученных для УЩ для установления этапов эндогенных процессов, сформировавших континентальную кору Сарматии. Изучение химического состава циркона позволило, используя разработанные критерии [Vavra et al., 1999; Belousova et al., 2002; Hoskin, Schaltegger, 2003; Rayner et al., 2005; Pelleter et al., 2007; и др.], идентифицировать магматические и метаморфические цирконы.

АНАЛИТИЧЕСКИЕ МЕТОДЫ

Изучение изотопной U-Pb системы в цирконе выполнено в ЦИИ ВСЕГЕИ (г. Санкт-Петербург) на ионном микрозонде SHRIMP-II по методике [Williams, 1998], адаптированной для ЦИИ [Schuth et al., 2012]. Отношения ²⁰⁷Pb/²³⁵U, ²⁰⁶Pb/²³⁸U, а также значения возраста для индивидуальных анализов приведены с погрешностью 1₅, а рассчитанные значения пересечений дискордии — с погрешностью 2₅.

Рис. 2. Геологическая карта восточной части Украинского щита (Среднеприднепровская и Приазовская провинции) составлена с использованием данных [Лысак, Пащенко, 2002; Лысак и др., 2004] и неопубликованных материалов В.В. Сукача (*a*), схема строения Украинского щита (*б*)).

а — 1—5 — архей: 1 — ТТГ гнейсы с реликтами амфиболитов (аульская серия в СПП), днепропетровский комплекс СПП, шевченковский комплекс и частично западно-приазовская серия ПП, 2 — супракрустальные породы зеленокаменных поясов, 3 — интрузии тоналитов и трондьемитов — комагматов кислых вулканитов СПП, 4 — интрузии мафитов, 5 — граниты; 6, 7 — протерозой: 6 — вулканогенно-осадочные породы, 7 — субщелочные габбро, сиениты, граносиениты, щелочные граниты, нефелиновые сиениты, карбонатиты, мельтейгиты (2100—1800 млн лет); 8 — главные и 9 — второстепенные тектонические нарушения; 6 — 1 — протерозой, 2 — архей плюс протерозой. Название провинций и шовных зон, разделяющих провинции, см. на рис. 1.

Измеренные Pb/U отношения нормализованы относительно стандартного циркона Temora [Black et al., 2003].

Определение содержания редких и редкоземельных элементов в цирконе проводилось в Ярославском филиале Физико-технологического института РАН на ионном микрозонде Cameca IMS-4f по методике, описанной в работах [Hinton, Upton, 1991; Федотова и др., 2008]. Относительные ошибки анализа 10—15 %, средний порог обнаружения 10 мг/т.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ВОРОНЕЖСКОГО КРИСТАЛЛИЧЕСКОГО МАССИВА И ИХ СОПОСТАВЛЕНИЕ С ДАННЫМИ ПО УКРАИНСКОМУ ЩИТУ

3.75—3.20 млрд лет (палеоархей)

Палеоархейские породы Сарматии сохранились в Приазовской (ПП) и Днестровско-Бугской (ДБП) провинциях УЩ, а также в Курском блоке ВКМ.

В различных районах ПП они представлены пироксенитами и тоналитами с возрастом 3.65 и 3.60 млрд лет [Bibikova, Williams,1990], тоналитами (3.6 и 3.5 млрд лет) и мигматитами (3.4 млрд лет) [Lobach-Zhuchenko et al., 2014], тоналитами (3.56 млрд лет) [Артеменко и др., 2006]. О широком разви-

тии палеоархейских пород свидетельствует детритовый циркон древнее 3.6 млрд лет в осадках, анализ состава которого позволил также установить проявление 3.3 млрд л. н. гранулитового метаморфизма [Бибикова и др., 2010].

В ДБП преобладают гнейсоэндербиты [Щербаков, 2005] с максимальным возрастом 3.79 млрд лет [Claesson et al., 2015]. Последующая история формирования континентальной коры ДБП в палеоархее включает внедрение основных пород (3.66 млрд лет), гранулитовый метаморфизм (3.55 млрд лет) и внедрение ортопироксенитов (3.34 млрд лет) [Лобач-Жученко и др., 2013, 2016].

В ВКМ к древнейшим образованиям относится обоянский комплекс [Чернышов и др., 2009], его гранит-мигматитовая часть включает плагиогнейсы с прослоями и линзами амфиболитов. Палеоархейский возраст обоянского комплекса получен для амфиболита (пр. 035) и двух гранитоидов (пробы 066 и 016). Амфиболит слагает среди плагиогнейсов прослой мощностью 8 м. Датировки большей части зерен циркона образуют конкордантный кластер 3475±14 млн лет (табл. 1, рис. 3). Для оценки генезиса цирконов была использована изотопная Hf-Nd систематика [Лохов и др., 2009б]. Ее суть заключается в изотопной корреляции циркон-порода и базируется на том факте, что в магматических породах в широком диапазоне составов и PT-параметров генерации магм начальные отношения изотопов гафния и неодима коррелированны и на графике $\varepsilon_{\rm Nd}(T)$ — $\varepsilon_{\rm Hf}(T)$ образуют магматический тренд корреляции («terrestrial array» TA) с приблизительной зависимостью $\varepsilon_{Hf}(T) = 1.4 \cdot \varepsilon_{Nd}(T) + 3$, при разбросе около 3–4 единиц эпсилон [Salters, White, 1998; Vervoort, Blicher-Toft, 1999; и др.]. Если в породе циркон магматический, то определенный по нему инициальный изотопный состав гафния будет в балансе с инициальным изотопным составом неодима породы, т. е. в координатах $\varepsilon_{\rm Nd}(T)$ — $\varepsilon_{\rm Hf}(T)$ фигуративная точка попадет в поле ТА. Для захваченных или унаследованных цирконов расчетная величина $\varepsilon_{Nd}(T)$ породы будет завышена, поскольку расчет осуществляется на возраст более древний, чем образование породы, соответственно, на графике фигуративные точки будут располагаться правее и ниже полосы корреляции для магматических цирконов. При использовании постмагматических цирконов расчет величины $\varepsilon_{Nd}(T)$ будет осуществлен на возраст более молодой, чем возраст магматической кристаллизации, и, соответственно, занижен, поэтому фигуративные точки таких цирконов расположатся выше и левее полосы корреляции магматических цирконов. На диаграмме изотопной Hf-Nd корреляции эти зерна находятся за пределами линейного поля магматических пород (ТА на рис. 7 в работе [Лохов и др., 2009б]). Это дает основание рассматривать значение 3475±14 млн лет как возраст метаморфизма. Более древние возрасты циркона из пр. 035 — 3667 и 3647 млн лет — получены для зерна 6 (см. табл. 1, рис. 3). На изотопной Hf-Nd диаграмме зерно 6 располагается в области ТА. Зерно 7, имеющее промежуточный возраст 3544 млн лет, по-видимому, также магматического генезиса, но потеряло радиогенный свинец в большей степени, чем зерно 6 [Лохов и др., 2009б].

В пр. 066 (ультраметаморфический гранит, по [Таусон, 1977]), для девяти зерен циркона получен конкордантный возраст 3473±16 млн лет (см. табл. 1, рис. 3). Содержания U, Th и Th/U отношение (в среднем равное 0.55) типичны для магматического циркона.

Циркон из гнейсотрондьемита пр. 016 представлен двухфазными и призматическими однофазными кристаллами. Конкордантный возраст ядер циркона равен 3523±13 млн лет (см. табл. 1, рис. 3), а их геохимические характеристики — крутой наклон спектра REE, высокое (Sm/La)_n отношение — соответствуют таковым в магматическом цирконе (рис. 3, 4; табл. 2).

Древний циркон обнаружен также в мезоархейской (пр. 073) и протерозойских (пр. 031, 042) интрузиях основного состава. В амфиболизированном оливиновом габбронорите (пр. 073) циркон содержит ядра, возраст которых по отношению 207 Pb/ 206 Pb варьирует от 3.4 до 3.8 млрд лет (см. табл. 1). В габбро-долерите пр. 031 найдено семь зерен циркона с конкордантным возрастом 3507±10 млн лет (см. табл. 1). При расчете дискордии с учетом других 17 измененных доменов циркона получаем возраст по верхнему пересечению дискордии с конкордией в 3499±29 млн лет при СКВО = 2.5 (n = 24). Ксеногенная природа этого циркона подтверждена анализом Hf-Nd системы [Лохов и др., 20096]. Ксеногенный циркон с возрастом 3.5 и 3.1 млрд лет присутствует также в габбро-долерите смородинского комплекса (пр. 042), возраст бадделеита из которого равен 1787±5 млн лет [Альбеков и др., 2012]. Геохимические характеристики циркона с возрастом 3.5 млрд лет (см. табл. 2) — Th/U отношение, крутой спектр распределения REE, отношение (Sm/La)_n > 10 и низкое содержание La, соотношение Се- и Еuаномалии указывают на его магматический генезис [Hoskin, Schaltegger, 2003; Pelleter et al., 2007].

Таким образом, присутствие основных пород с возрастом около ~ 3.6 млрд лет установлено в ПП [Bibikova, Williams, 1990], в ДБП [Лобач-Жученко и др., 2016], в КБ (настоящая работа).

Наиболее ранний этап метаморфизма для Сарматии датирован в ДБП (3.5 млрд лет), где он отвечает гранулитовой фации метаморфизма [Lobach-Zhuchenko et al., 2016]. В Курском блоке метаморфизм этого времени зафиксирован в амфиболитах обоянского комплекса (3.48 млрд лет; см. рис. 3). Присутствие среди детритового циркона в метаосадках Приазовья зерен с возрастом 3500±30 млн лет, имеющих Th/U <0.1 [Бибикова и др., 2010], отмечает проявление метаморфизма и на этой территории. В этих

же пробах присутствуют каймы циркона, обрастающие древние ядра и имеющие возраст ~ 3.3 млрд лет; образование которых рассматривается авторами [Бибикова и др., 2010] как результат гранулитового метаморфизма.

Одновременно с отмеченным выше высокотемпературным метаморфизмом был образован протолит гранитов пр. 066 и 016 (3.47 и 3.52 млрд лет соответственно), средняя температура кристаллизации магматического циркона которого, рассчитанная по Ti, 800 °C (табл. 2, пр. 016). На Украинском щите в конце палеоархея, в интервале 3.4—3.2 млрд лет, зафиксирован лишь ортопироксенит в ДБП, имеющий магматический циркон с возрастом 3.34 млрд лет [Лобач-Жученко и др., 2013].

Таким образом, эоархей и палеоархей на территории Сарматии датирован в двух провинциях УЩ и в КБ ВКМ. Древнейшими породами являются тоналиты и эндербиты, значения возраста достигают 3.79 млрд лет [Claesson et al., 2015]. Модельный возраст $T_{\rm Nd}(\rm DM)$ четырех образцов гнейсоэндербитов ДБП, составляющий 3.87—3.95 млрд лет (неопубликованные данные авторов), $T_{\rm Nd}(\rm DM) = 3.5–3.6$ млрд лет для гнейсов обоянской серии ВКМ [Ненахов и др., 2007], а также анализ U-Pb и Lu-Hf систем детритового циркона УЩ [Claesson et al., 2015] определяют палеоархейский этап формирования континентальной коры Сарматии.

3.2—2.8 млрд лет (мезоархей)

Мезоархейские эндогенные события проявлены на всей территории Сарматии и являются определяющими в строении ее современного среза. Эти события начинаются с формирования 3.2—3.0 млрд л. н. зеленокаменных поясов, вулканизм которых связывается с условиями внутриконтинентального рифтогенеза [Крестин, 1980; Сиворонов и др., 1983; Бочаров и др., 1993; Чернышов и др., 1997, 2009; Щербаков, 2005]. Последующий интервал времени (2.95—2.85 млрд лет) характеризуется активным основным магматизмом, образованием ультраметаморфических гранитов и высокотемпературным метаморфизмом.

В Курском блоке вулканогенно-осадочная ассоциация пород слагает зеленокаменные пояса (ЗКП) северо-западного простирания за исключением юго-западной части КБ, являющейся продолжением СПП УЩ, где они имеют более сложную конфигурациию (см. рис. 1, а). В разрезе выделяется александровская серия, представленная ультраосновными-основными метавулканитами, и лебединская серия, сложенная базальт-андезит-дацит-риолитами [Крестин, 1980; Зеленокаменные пояса..., 1988; Бочаров и др., 1993; Чернышов и др., 1997, 2009; Боброва, 2013; Рыборак, Альбеков, 2015]. Время вулканизма установлено для метариолита лебединской серии (пр. 025). Зерна циркона имеют осцилляторную зональность. Все 10 зерен имеют конкордантный возраст 3152±10 млн лет (см. табл. 1, рис. 3) и отражают время кристаллизации риолита. Большая часть зерен имеет геохимические характеристики магматического циркона (см. табл. 2, рис. 4), три зерна обогащены LREE, что указывает на частичную перекристаллизацию циркона без нарушения U-Pb системы (см. рис. 4, табл. 2). В ассоциации с зеленокаменными структурами располагается сергиевский габбро-дунит-перидотитовый комплекс. Серпентинит (пр. 065, см. табл. 1) сергиевского комплекса по минеральному и химическому составу отвечает полностью серпентинизированному ультрамафиту. Циркон имеет хорошо выраженную зональность и реликты огранки зерен. Зерна циркона различаются по составу. Часть зерен (точки 3.1, 6.1, 8.1, 10.1, 11.1, см. табл. 2) сохраняют сильное фракционирование REE, типичное для магматического циркона. Их конкордантный U-Pb возраст равен 3130±12 млн лет (см. рис. 3). Эти зерна отличаются также низкой (около 700 °C) рассчитанной по титану температурой (см. табл. 2). Другие зерна (точки 1.1, 2,1, 4.1, 5.1, 10.1) характеризуется увеличением LREE, резким уменьшением степени фракционирования REE, температурой более 800 °C (см. табл. 2). Этот наложенный метасоматический процесс сопровождается уменьшением величины Се-аномалии (см. табл. 2) и близок по времени к кристаллизации первой группы зерен. Если вторая группа циркона датирует наложенный метаморфизм, то природа появления магматического циркона в ультрамафите непонятна.

На примере амфиболита пр. 026 (метатолеит александровской серии) определен возраст метаморфизма вулканитов. Для циркона получен конкордантный возраст 3027.5 ± 9.9 млн лет (см. рис. 3). Низкое Th/U отношение (0.03, см. табл. 1) отвечает метаморфической природе циркона. Из осадочных пород датирован железистый кварцит (пр. 068), взятый из скважины, в которой наблюдается перемежаемость кварцитов и метагабброноритов бесединского габбро-пироксенит-перидотитового комплекса. Датировано 16 зерен циркона; все зерна циркона из кварцита имеют ядра, возраст которых варьирует от 3.16 до 2.9 млрд лет (табл. 1), что указывает на разный возраст источников терригенного циркона, в том числе и близкий к возрасту, полученному для вулканитов.

Интрузивные породы, синхронные с образованием вулканитов, принадлежат салтыковскому комплексу, который относится к позднему архею [Чернышов и др., 2009]. Комплекс сложен в основном породами тоналит-трондьемит-гранодиоритовой серии. Датированные образцы представлены гранодиоритами (пр. 070 и 027). Порода пр. 070 содержит прожилки кальцита, характеризуется крайне низким содержанием MREE и HREE, что, возможно, связано с процессом карбонатизации. Циркон при этом

Номер зерна и	²⁰⁶ Pb.,	n	Th	206 Pb *		Bospacr ²⁰⁷ Pb/ ²⁰⁶ Pb,	Дискордант-			TTEC MEDIC	è	10207 10200	è	U.L.U.L
точки	%		r/T		0 007/4 1 7 C7	млн лет	ность, %	$q_{A_{007}}/q_{A_{107}}$	% +1	nccz/9dinz	+,%	nocz/qdonz	+,%	KK
						Ip. 035, амфиболит, ск	в. 3016, 52.2° с.	ш., 36.8° в.д.						
1.1	0.01	338	82	205	0.25	3478±7	1	0.3015	0.4	29.29	2.6	0.705	2.5	0.986
2.1	0.13	93	33	56	0.37	$3467{\pm}11$	1	0.2993	0.7	29.10	2.8	0.705	2.7	0.966
2.2	0.40	45	13	27	0.29	3462±17	0	0.2984	1.1	29.14	3.0	0.708	2.8	0.933
3.1	0.01	542	161	319	0.31	3490±5	4	0.3038	0.3	28.70	2.6	0.685	2.5	0.991
4.1	0.01	455	66	271	0.22	3460 ± 8	2	0.2980	0.5	28.42	2.6	0.692	2.5	0.979
5.1	0.04	275	55	160	0.21	3468±6	4	0.2995	0.4	27.94	2.6	0.677	2.5	066.0
6.1	0.05	251	196	161	0.81	3667±5	2	0.3410	0.3	35.09	2.6	0.746	2.5	0.991
6.2	0.03	191	200	119	1.08	3647±6	4	0.3365	0.4	33.63	2.6	0.725	2.5	0.989
7.1	0.40	209	130	132	0.64	3571±6	1	0.3202	0.4	32.13	2.6	0.728	2.5	0.988
8.1	0.03	510	148	306	0.30	3483±4	2	0.3024	0.3	29.14	2.5	0.699	2.5	0.995
					Ш	р. 066, гранодиорит, сі	кв. 4083, 51.9° с	.ш., 36.5° в.д.						
5.1	0.29	546	398	154	0.75	3319±7	82	0.2722	0.5	12.20	2.1	0.326	2.1	0.976
2.1	0.07	177	129	57	0.76	2078±17	1	0.1285	1.0	6.600	2.3	0.375	2.1	0.908
1.1	0.01	145	168	47	1.20	2082±19	0	0.1288	1.1	6.800	2.4	0.380	2.2	0.890
7.2	0.41	609	106	290	0.18	3325±6	17	0.2733	0.4	20.80	2.1	0.552	2.0	0.984
8.1	0.10	317	186	183	0.61	3485±6	9	0.3029	0.4	27.90	2.1	0.669	2.1	0.983
11.1	0.11	127	78	73	0.64	3474±9	5	0.3006	0.6	27.90	2.2	0.673	2.2	0.962
12.1	0.04	160	108	97	0.70	3494±8	1	0.3046	0.5	29.70	2.2	0.706	2.1	0.969
15.1	0.12	171	56	105	0.33	3486 ± 10	0	0.3031	0.7	29.90	2.3	0.715	2.2	0.957
3.1	0.11	143	67	89	0.48	3459±9	-2	0.2978	0.6	29.80	2.3	0.725	2.2	0.967
9.2	0.12	152	74	95	0.51	3478±8	-1	0.3016	0.6	30.20	2.2	0.726	2.1	0.969
13.1	0.06	155	129	97	0.86	3471±9	-2	0.3002	0.6	30.10	2.2	0.728	2.1	0.968
6.1	0.04	69	31	44	0.46	3481±12	ų	0.3020	0.8	30.90	2.4	0.742	2.3	0.944
14.1	0.05	101	53	65	0.55	3486 ± 13	ų	0.3031	0.8	31.20	2.4	0.748	2.3	0.940
16.1	0.07	1000	107	476	0.11	3016±7	9	0.2249	0.4	17.18	1.8	0.554	1.7	0.973
9.3	0.41	86	43	51	0.52	$3436{\pm}20$	3	0.2935	1.3	27.55	2.8	0.681	2.5	0.889
17.1	0.10	362	167	223	0.48	3476±8	0	0.3011	0.5	29.81	1.9	0.718	1.8	0.960
18.1	0.23	265	300	148	1.17	$3687{\pm}10$	14	0.3453	0.7	30.90	1.9	0.649	1.8	0.938
19.1	0.14	570	272	146	0.49	3215±10	91	0.2548	0.7	10.47	1.9	0.298	1.8	0.936
20.1	0.06	504	213	232	0.44	3424±8	24	0.2911	0.5	21.54	1.8	0.537	1.8	0.963
1.2	0.01	103	127	35	1.27	2123 ± 34	-1	0.1319	1.9	7.200	2.7	0.396	1.9	0.707
22.1	0.15	602	272	276	0.47	3405±8	24	0.2876	0.5	21.12	1.8	0.532	1.7	0.964

_	0.957	0.957	0.989	0.865	0.988	0.993	0.972	0.995	0.968	0.992	0.838	0.992	0.967	0.994		0.962	0.902	0.893	0.957	0.913	0.970	0.991	0.993	0.959	0.944	0.992	0.850	0.993	0.943	0.904	0.991	0.709	0.771	0.971	0.891
	2.1	2.0	2.3	2.0	2.0	2.1	2.0	2.2	2.0	2.2	2.0	2.1	2.0	2.2		1.9	1.9	1.9	1.9	2.0	1.9	1.9	1.9	1.9	1.9	1.2	1.9	1.7	1.7	1.8	1.7	1.9	1.8	1.7	1.9
_	0.736	0.554	0.752	0.550	0.703	0.734	0.556	0.715	0.540	0.728	0.553	0.719	0.559	0.666		0.558	0.647	0.560	0.544	0.574	0.567	0.675	0.649	0.586	0.566	0.748	0.556	0.722	0.694	0.554	0.751	0.592	0.553	0.803	0.552
-	2.2	2.0	2.6	2.0	2.0	2.2	2.0	2.2	2.0	2.6	2.0	2.2	2.0	2.2		2.0	2.1	2.2	2.0	2.2	1.9	1.9	1.9	2.0	2.0	1.7	2.2	1.7	1.8	2.0	1.7	2.8	2.3	1.8	2.1
_	3139	15.32	32.22	15.38	29.57	31.42	15.60	29.18	14.98	30.89	15.45	28.65	15.60	26.36		15.14	20.17	14.33	14.44	15.07	15.90	28.05	25.68	16.43	15.56	30.82	15.40	29.40	28.21	15.03	30.97	15.93	15.39	32.20	15.63
- t_	9.0	0.3	1.3	0.3	0.2	0.5	0.2	0.6	0.3	1.4	0.3	0.6	0.2	0.6	5° в.д.	0.5	0.9	1.0	0.6	0.9	0.5	0.3	0.2	0.6	0.7	0.2	1.2	0.2	0.6	0.9	0.2	1.9	1.5	0.4	1.0
· · · · · · · · · · · · · · · · · · ·	0.3094	0.2005	0.3108	0.2027	0.3051	0.3105	0.2033	0.2961	0.2010	0.3076	0.2026	0.2891	0.2025	0.2870	51.9° с.ш., 37.5	0.1970	0.2262	0.1857	0.1926	0.1905	0.2035	0.3015	0.2871	0.2034	0.1994	0.2990	0.2010	0.2955	0.2947	0.1969	0.2990	0.1953	0.2018	0.2907	0.2055
	-1	0	-3	1	2	-1	0	-1	2	-1	0	-2	-1	ю	рит, скв. 3800,	-2	-6	-6	-1	-6	-1	5	6	4	-2	4-	0	-2	1	-1	-4	-7	0	-10	1
o, monoto company	3518 ± 10	2831±5	3525±20	2848±5	3496±3	3523±8	2853±3	3450±9	2834±4	3509±22	2847±4	3413±9	2847±4	3401 ± 9	ливиновый габброно	2802±9	3026±15	2704±16	2764±9	2746±15	2854±8	3478±4	3402±4	2854±9	2821±11	3599±48	2848±44	3502±47	3399±46	2841±42	3613±48	2996±47	2838 ± 41	3801 ± 50	2832±43
- der	1.08	0.06	0.61	0.05	0.28	0.67	0.02	0.61	0.04	0.66	0.06	0.62	0.07	0.67	Пр. 073, с	0.12	0.04	0.27	0.12	0.79	0.13	0.57	0.95	0.11	0.10	0.24	0.35	0.23	0.53	0.16	0.17	0.05	0.06	0.25	0.12
_	115	466	44	525	936	82	812	74	548	73	519	74	647	65		140	460	65	137	36	123	1240	1540	161	107	2090	96	2390	526	174	1920	152	391	1720	176
-	190	56	39	57	413	85	27	72	51	74	61	72	96	73		35	32	35	34	55	32	1171	2528	34	20	755	69	850	456	56	476	14	47	607	42
	182	978	67	1111	1550	130	1698	121	1180	117	1092	119	1347	113		292	829	135	293	72	252	2133	2764	319	221	3247	201	3857	892	366	2977	297	802	2491	371
_	0.04	0.03	0.06	0.01	0.01	0.01	0.01	0.06	0.02	0.06	0.02	0.06	0.01	0.02		0.02	0.01	0.03	0.02	0.12	0.03	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.04	0.04	0.44	1.86	0.02	0.01
-	1.1	1.2	2.1	2.2	3.1	4.1	4.2	5.1	5.2	6.1	6.2	7.1	7.2	8.1		1.1	2.1	2.2	3.1	3.2	4.1	4.2	5.1	5.2	6.1	6.2	6.3	7.1	8.1	8.2	9.1	10.1	11.1	12.1	13.1

Пр. 016, гнейсотрондьемит, скв. 2849, 51.6° с.ш., 36.5° в.д.

												Ipoz	(олжение	табл. 1
Номер зерна и	²⁰⁶ Pb _c ,	D	Th	²⁰⁶ Pb*	232Th/238U	Bo3pacT ²⁰⁷ Pb/ ²⁰⁶ Pb,	Дискордант-	²⁰⁷ Pb/ ²⁰⁶ Pb	+.%	²⁰⁷ Pb/235U	+ %	206Pb/238U	°%+	KK
точки	%		Γ/T			млн лет	ность, %						,	
					Πp.	. 031, габбро-долерит,	скв. 2973, 51.6°	с.ш., 36.3° в.д.						
2.1	0.04	106	71	55	0.70	3195±10	Ś	0.2516	0.6	20.84	1.4	0.601	1.3	0.898
8.1	0.02	149	82	83	0.57	3309±8	б	0.2705	0.5	24.22	1.3	0.649	1.2	0.928
1.1	0.01	228	221	134	1.00	3458±5	ŝ	0.2976	0.3	28.01	1.2	0.683	1.2	0.963
8.2	0.03	135	54	79	0.41	3474±9	4	0.3008	0.6	28.33	1.4	0.683	1.3	0.908
3.2	0.01	129	67	76	0.54	3452±8	2	0.2965	0.5	28.18	1.3	0.689	1.2	0.928
7.1	0.01	172	85	104	0.51	3464±7	1	0.2988	0.4	29.12	1.3	0.707	1.2	0.943
5.1	0.01	96	68	60	0.73	3507±9	0	0.3071	0.6	30.49	1.4	0.720	1.3	0.918
9.1	0.07	124	90	77	0.75	3503±8	0	0.3064	0.5	30.51	1.3	0.722	1.2	0.928
3.1	0.01	96	56	60	0.60	3521±9	0	0.3099	0.6	31.04	1.4	0.726	1.3	0.916
6.1	0.03	107	80	67	0.78	3516±8	0	0.3091	0.5	30.99	1.4	0.727	1.3	0.924
10.1	0.03	127	71	80	0.57	3517±9	-1	0.3092	0.6	31.26	1.4	0.733	1.3	0.907
4.1	0.03	132	68	84	0.53	3544±10	-1	0.3148	0.7	32.17	1.4	0.741	1.3	0.888
9.2	0.01	210	130	138	0.64	3501±8	4	0.3060	0.5	32.25	1.3	0.764	1.2	0.929
10.2	0.02	155	105	107	0.70	3569±8	-9	0.3199	0.5	35.25	1.4	0.799	1.3	0.924
8.3	0.01	108	69	68	0.67	3565±20	0	0.3190	1.3	32.44	2.4	0.738	2.0	0.843
7.2	0.01	83	46	49	0.57	3525±24	5	0.3108	1.6	29.42	2.6	0.687	2.1	0.808
11.1	0.10	323	234	185	0.75	3405±13	б	0.2877	0.9	26.44	2.0	0.667	1.8	0.906
12.1	0.01	292	190	172	0.67	3408±13	1	0.2882	0.8	27.26	2.0	0.686	1.8	0.913
13.1	0.01	355	326	220	0.95	3492±10	0	0.3043	0.7	30.21	1.9	0.720	1.8	0.940
14.1	0.07	590	654	369	1.14	3502±8	-1	0.3062	0.5	30.71	1.8	0.727	1.8	0.958
14.2	0.39	90	44	54	0.51	3491±26	б	0.3041	1.7	28.96	2.7	0.691	2.2	0.796
13.2	0.03	164	94	102	0.59	3500±15	0	0.3059	1.0	30.44	2.1	0.722	1.9	0.889
15.1	0.15	218	186	118	0.88	3272±15	4	0.2642	1.0	22.88	2.1	0.628	1.8	0.888
15.2	0.05	56	30	34	0.55	3519±25	ω	0.3096	1.6	29.76	2.7	0.697	2.2	0.797
					Πp.	. 042, габбро-долерит,	скв. 3868, 52.7°	с.ш., 35.2° в.д.						
1.1	0.39	479	312	31	0.67	428±66	8-	0.0554	2.9	0.573	3.0	0.075	0.7	0.220
2.1	0.09	40	14	21	0.37	3119±19	1	0.2398	1.2	20.33	1.8	0.615	1.4	0.759
3.1	0.06	108	47	68	0.45	3521±9	0	0.3100	0.6	31.23	1.0	0.731	0.9	0.819
3.2	0.11	110	54	69	0.50	3519±10	0	0.3096	0.6	30.97	1.1	0.726	0.9	0.814
3.3	0.01	1384	271	699	0.20	3183±11	11	0.2498	0.7	19.39	0.9	0.563	0.5	0.597
4.1	0.12	150	167	44	1.15	1900 ± 20	0	0.1163	1.1	5.506	1.4	0.343	0.8	0.579

	0.675	0.676	0.729	0.790	0.698	0.729	0.698	0.730	0.737	0.716		0.958	0.968	0.940	0.887	0.956	0.954	0.975	0.939	0.981	0.970		0.916	0.944	0.959	0.911	0.978	0.913	0.980	0.986	0.976	0.910	0000
	1.5	1.2	1.0	0.9	1.4	1.0	1.1	0.9	0.8	1.1		2.6	2.6	2.6	2.7	2.6	2.6	2.6	2.7	2.6	2.6		2.1	2.6	2.1	2.1	2.0	2.1	2.0	2.0	2.0	2.1	ć
	0.594	0.599	0.576	0.618	0.571	0.620	0.588	0.613	0.611	0.598		0.615	0.637	0.617	0.612	0.631	0.636	0.620	0.661	0.628	0.586		0.627	0.554	0.576	0.550	0.631	0.553	0.545	0.570	0.571	0.614	0 5 00
	2.2	1.8	1.4	1.2	2.0	1.6	1.5	1.2	1.1	1.6		2.7	2.7	2.8	3.0	2.7	2.7	2.6	2.9	2.6	2.7		2.3	2.8	2.2	2.4	2.1	2.3	2.0	2.0	2.0	2.3	с с
	17.93	19.00	17.83	19.38	17.88	19.48	18.37	19.21	19.07	18.56		20.70	21.50	20.85	20.99	21.37	21.26	21.10	22.40	21.80	20.40		21.19	14.93	16.87	14.78	21.41	14.98	14.56	16.76	17.40	19.93	10.00
	1.7	1.3	1.0	0.7	1.4	1.1	1.1	0.8	0.7	1.1		0.8	0.7	1.0	1.4	0.8	0.8	9.0	1.0	0.5	0.7	3.Д.	0.0	6.0	9.0	1.0	0.4	1.0	0.4	0.3	0.5	1.0	0.3
п., 35.4° в.д.	0.2191	0.2300	0.2245	0.2275	0.2270	0.2278	0.2265	0.2275	0.2264	0.2250	ш., 35.5° в.д.	0.2441	0.2449	0.2449	0.2486	0.2455	0.2424	0.2467	0.2457	0.2435	0.2483	3° с.ш., 36.9° в	0.2451	0.1956	0.2123	0.1951	0.2462	0.1966	0.1939	0.2133	0.2164	0.2353	0 23/1
4186, 52.3° с.1	-1	1	ю	-2	4	-2	1	-2	-2	0	з. 3747, 52.2° с.	2	-1	7	ю	0	-1	7	-3	0	7	г, скв. 2845, 51.	0	-2	0	-1	0	-1	-1	1	1	0	2
. 026, амфиболит, скн	2974±27	3052±21	3013±16	$3034{\pm}12$	$3031{\pm}23$	3037±17	3027±18	$3034{\pm}13$	3027±12	3017±17	025, метариолит, скі	3147±13	3152±11	3152±15	3176±22	3156±13	3135±13	3164±9	3157±16	3143±8	3174±10	, железистый кварци	3153±15	2790±15	2924±10	2785±16	3160±7	2798±16	2776±7	$2931{\pm}5$	2954±7	3088 ± 15	3080+5
Пр.	0.04	0.03	0.02	0.01	0.03	0.03	0.03	0.01	0.02	0.02	Πp.	0.61	0.59	0.46	0.97	0.55	0.53	0.65	0.46	0.85	0.59	Πp. 068	0.44	0.57	0.42	0.50	0.77	0.43	0.24	0.31	0.26	0.71	0.30
	35	40	49	98	29	41	45	69	86	40		31	55	40	31	54	48	63	23	85	46		95	41	78	34	66	37	167	283	158	51	347
	2	2	1	2	1	2	2	2	4	2		35	58	33	56	53	44	74	18	130	52		75	48	64	34	136	32	84	174	82	66	256
	67	77	100	184	60	76	88	131	163	76		58	101	75	59	66	87	117	40	157	91		175	87	158	71	183	77	357	578	322	97	686
	0.81	0.35	0.16	0.22	0.40	0.16	0.36	0.16	0.27	0.33		0.03	0.10	0.22	0.39	0.09	0.05	0.05	0.01	0.08	0.01		0.23	0.10	0.07	0.20	0.01	0.20	0.05	0.01	0.07	0.01	0.03
	1.1	2.1	3.1	4.1	5.1	6.1	7.1	8.1	9.1	10.1		1.1	2.1	3.1	4.1	5.1	6.1	7.1	8.1	9.1	10.1		1.1	1.2	2.1	2.2	3.1	3.2	4.1	4.2	5.1	6.1	7.1

ие табл. 1	KK	0.928	0.957	0.935	0.980	0.909		0.810	0.541	0.736	0.661	0.742	0.753	0.752	0.739	0.749		0.781	0.758	0.730	0.823	0.812	0.796	0.781	0.758	0.730	0.753	0.689	0.627		0.870	0.704
должен	<u>+</u> ,%	2.1	2.0	2.1	2.0	2.2		0.9	1.7	1.1	1.3	1.0	1.1	1.0	1.2	0.9		0.9	0.9	1.2	0.6	0.5	1.0	1.8	1.0	1.4	1.7	1.0	0.9		1.2	1.6
IIpo	206 Pb /238U	0.553	0.596	0.537	0.615	0.558		0.618	0.584	0.593	0.537	0.622	0.622	0.590	0.631	0.628		0.580	0.558	0.557	0.650	0.538	0.551	0.564	0.307	0.570	0.569	0.576	0.564		0.294	0.420
	<u>+</u> ,%	2.3	2.1	2.3	2.0	2.4		1.1	3.1	1.5	2.0	1.3	1.4	1.4	1.6	1.2		1.2	1.2	1.7	0.7	0.6	1.2	2.8	3.0	1.8	2.2	1.5	1.5		1.4	2.2
	207 Pb /235U	14.76	19.56	14.41	20.28	14.99		20.65	17.60	20.70	15.32	20.86	20.50	19.64	21.34	20.90		16.91	16.24	16.12	22.27	14.49	16.08	16.36	4.310	16.40	16.98	16.85	16.18		8.670	12.29
	<u>+</u> ,%	0.9	0.6	0.8	0.4	1.0		0.6	2.6	1.0	1.5	0.9	0.9	0.9	1.1	0.8		0.7	0.8	1.1	0.4	0.3	0.7	2.1	2.9	1.2	1.4	1.1	1.2		0.7	1.6
	²⁰⁷ Pb/ ²⁰⁶ Pb	0.1937	0.2382	0.1947	0.2393	0.1948	.ш., 34.9° в.д.	0.2424	0.2120	0.2454	0.2070	0.2432	0.2392	0.2412	0.2454	0.2416	, 35.2° в.д.	0.2115	0.2111	0.2099	0.2485	0.1953	0.2115	0.2103	0.1019	0.2085	0.2162	0.2123	0.2080	, 36.4° в.д.	0.2137	0.2122
	Дискордант- ность, %	-2	ю	0	1	-3	.в. 3542, 52.3° с	1	-1	S	4	1	0	5	0	0	3868, 52.7° с.ш.	-1	2	2	-2	0	3	1	4-	-1	2	0	0	3032, 52.4° с.ш.	76	29
	Boзpacr ²⁰⁷ Pb/ ²⁰⁶ Pb, млн лет	$2774{\pm}14$	$3108{\pm}10$	2782±13	3115±7	2783±16	065, серпентинит, сн	3136±10	2921±42	3155±16	2882±24	3141 ± 14	3115±15	3128 ± 14	3155±17	3130 ± 13	Пр. 003, габбро, скв.	2917±12	2914±13	2905 ± 18	3175±6	2788±5	2917±12	2908 ± 34	1659 ± 53	$2894{\pm}19$	2953±23	2923±17	2890±19	Пр. 051, габбро, скв.	2934±11	2922±25
	232Th/238U	0.34	0.50	0.55	0.52	0.51	П	0.48	1.01	0.35	0.85	0.33	0.66	0.55	0.59	0.44		0.95	0.73	1.52	0.57	0.34	1.64	1.00	0.76	1.01	1.49	1.05	0.42		1.48	1.22
	²⁰⁶ Pb*	46	235	36	180	33		130	24	54	36	61	52	56	41	79		40	43	27	142	196	37	11	29	28	19	39	48		72	21
	Th ^{r/T}	32	224	41	172	33		114	47	36	64	37	62	58	44	63		74	63	83	141	138	124	21	80	56	56	80	40		404	67
	n	97	459	77	340	68		245	48	106	77	114	98	110	76	147		81	89	56	254	425	78	22	110	57	39	79	66		283	57
	²⁰⁶ Pb _c , %	0.01	0.01	0.09	0.04	0.09		0.02	0.41	0.18	0.49	0.10	0.18	0.14	0.32	0.20		0.01	0.26	0.35	0.10	0.01	0.01	0.63	0.49	0.26	0.38	0.34	0.23		0.08	0.25
	Номер зерна и точки	7.2	8.1	8.2	9.1	9.2		1.1	2.1	3.1	4.1	5.1	6.1	7.1	8.1	10.1		1.1	1.2	2.1	3.1	3.2	4.1	5.2	6.1	7.1	9.1	12.1	13.1		1.2	7.2

0.838	0.753	0.788	0.814	0.829	0.748	0.813	0.778		0.918	0.645	0.902	0.927	0.926	0.870	0.935	0.943	0.892	0.676		0.770	0.691	0.708	0.698	0.751	0.728	0.774	0.732	0.705	0.752	0.759	0.744	0.776
1.5	1.7	1.5	1.6	1.4	1.7	1.5	1.3		2.0	2.2	2.0	2.0	2.0	2.1	1.1	1.1	2.1	2.2		0.8	1.0	1.2	1.0	0.7	0.9	0.7	1.2	1.5	1.3	1.3	0.8	1.1
0.498	0.532	0.546	0.551	0.558	0.561	0.564	0.375		0.527	0.490	0.590	0.542	0.533	0.550	0.520	0.528	0.530	0.534		0.332	0.393	0.394	0.428	0.463	0.508	0.512	0.524	0.526	0.538	0.559	0.569	0.603
1.7	2.3	1.9	1.9	1.7	2.3	1.8	1.7		2.1	3.5	2.2	2.1	2.2	2.4	2.1	2.0	2.4	3.3		1.1	1.4	1.7	1.5	1.0	1.3	1.0	1.7	2.2	1.7	1.7	1.1	1.4
14.39	15.67	15.73	16.14	16.40	16.32	16.32	6.530		15.14	14.20	16.92	15.51	15.27	15.63	14.55	15.40	15.23	15.13		10.07	11.82	12.19	13.20	14.46	15.64	16.08	16.25	16.32	16.84	17.31	17.86	18.75
1.0	1.5	1.2	1.1	0.9	1.5	1.1	1.0		0.9	2.7	1.0	0.8	0.8	1.2	0.7	0.7	1.1	2.4		0.7	1.0	1.2	1.1	9.0	0.9	9.0	1.1	1.5	1.1	1.1	0.7	0.9
0.2098	0.2137	0.2088	0.2126	0.2132	0.2111	0.2098	0.1264	ш., 34.8° в.д.	0.2084	0.2071	0.2079	0.2076	0.2077	0.2060	0.2029	0.2074	0.2085	0.2054	.ш., 35.3° в.д.	0.2200	0.2179	0.2247	0.2236	0.2263	0.2234	0.2276	0.2249	0.2252	0.2272	0.2245	0.2278	0.2255
12	7	ŝ	ŝ	2	2	1	0	в. 2571, 51.4° с.	9	12	-3	б	5	2	9	9	9	4	œ. 3833, 52.5° c	61	39	41	31	23	13	14	11	11	6	5	5	-1
2904±15	2933±25	2896±19	2926±18	2930±15	2914±25	2904±17	$2049{\pm}18$	0. 059, метагаббро, ск	2893±14	2887±43	289 ± 16	2887±13	2888±13	2874±19	2849 ± 12	2886±11	2894±17	2870±39	. 070, гранодиорит, сі	2981±11	2965±16	$3014{\pm}19$	3007±17	$3026{\pm}10$	3005 ± 14	3035 ± 10	$3016{\pm}18$	$3018{\pm}25$	3032±18	$3014{\pm}18$	3037±12	3020±14
0.88	1.53	1.40	0.92	1.15	1.52	1.62	0.47	Пр	1.32	2.25	0.84	1.42	1.70	1.28	1.61	1.39	1.10	1.22	Пр	0.45	0.52	0.50	0.49	0.71	0.58	0.53	0.48	0.43	0.52	0.35	09.0	0.45
40	16	30	22	37	23	31	40		39	20	31	40	38	22	49	58	23	13		106	61	40	49	134	84	148	42	31	45	46	119	70
78	53	86	42	86	71	102	57		110	66	49	118	138	57	170	170	53	32		160	90	57	63	232	107	173	43	28	48	32	140	59
92	36	64	47	77	49	65	124		86	46	60	86	84	46	109	127	50	27		370	179	119	133	336	192	336	94	67	97	94	243	135
0.28	0.47	0.45	0.11	0.24	0.19	0.20	0.04		0.15	4.17	0.09	0.09	0.10	0.11	0.10	0.06	0.11	0.42		0.21	0.21	0.26	0.37	0.43	0.27	0.08	0.23	0.72	0.34	0.30	0.19	0.31
7.1	5.1	4.1	6.1	1.1	2.1	3.1	8.1		1.1	2.1	2.2	3.1	4.1	5.1	6.1	7.1	8.1	9.1		8.1	10.1	1.2	11.1	7.1	13.1	6.1	4.1	1.3	12.1	5.1	9.1	1.1

·								·				Πpo	должение	табл. 1
Номер зерна и	²⁰⁶ Pb _c ,	D	Th	²⁰⁶ Pb*	232Th/238LI	Bo3pacT ²⁰⁷ Pb/ ²⁰⁶ Pb,	Дискордант-	207 Ph /206 Ph	~~~+	207 Ph/ 235 I I	% +	206 Ph /238 I]	% +	КK
Точки	%		T/T			млн лет	ность, %) 5	, ,) ;	2 2 2	
					П	р. 027, гранодиорит, с	кв. 4192, 52.2° с	.ш., 35.3° в.д.						
1.1	0.18	156	72	80	0.48	$3100{\pm}11$	3	0.2370	0.7	19.45	1.5	0.595	1.3	0.892
2.1	0.35	157	198	70	1.30	2676±14	0	0.1825	0.9	12.99	1.6	0.516	1.3	0.846
3.1	2.01	361	406	161	1.16	2813±24	6	0.1984	1.5	13.95	2.0	0.510	1.3	0.668
4.1	0.04	117	193	50	1.70	2671±15	2	0.1820	0.9	12.55	1.7	0.500	1.4	0.852
5.1	0.01	126	145	55	1.19	2705±15	3	0.1857	0.9	12.90	1.7	0.504	1.4	0.848
6.1	0.02	141	128	72	0.94	3106 ± 10	3	0.2379	0.7	19.64	1.5	0.599	1.4	0.902
7.1	0.02	157	54	76	0.36	2967±11	3	0.2181	0.7	16.96	1.5	0.564	1.3	0.897
7.2	0.08	106	131	52	1.29	2910±14	-1	0.2106	0.8	16.74	1.7	0.576	1.5	0.868
8.1	0.01	133	210	57	1.63	2662±13	1	0.1810	0.8	12.57	1.6	0.504	1.4	0.864
9.1	0.23	345	445	102	1.33	2612±12	38	0.1756	0.7	8.300	2.0	0.343	1.9	0.937
10.1	0.44	315	312	137	1.02	2550±19	ç.	0.1693	1.2	11.70	2.1	0.501	1.8	0.838
11.1	0.96	339	27	141	0.08	2983±17	18	0.2201	1.1	14.58	2.1	0.480	1.8	0.855
12.1	0.08	2227	229	758	0.11	$2094{\pm}10$	ς-	0.1297	0.5	7.070	1.8	0.396	1.7	0.954
13.1	0.64	381	122	147	0.33	2922±17	23	0.2121	1.1	13.04	2.1	0.446	1.8	0.858
14.1	0.12	758	251	337	0.34	2955±8	10	0.2165	0.5	15.42	1.8	0.517	1.7	0.960
16.1	2.11	256	406	116	1.64	2863±26	8	0.2043	1.6	14.38	2.4	0.510	1.8	0.757
18.1	0.68	368	44	185	0.12	2948 ± 16	0	0.2156	1.0	17.20	2.1	0.579	1.8	0.869
19.1	0.04	231	110	122	0.49	3088 ± 13	0	0.2353	0.8	19.84	2.0	0.612	1.8	0.913
					Π	р. 060, гранодиорит, с	кв. 2572, 51.4° с	.ш., 34.8° в.д.						
4.1	0.23	263	216	60	0.85	2917±12	94	0.2115	0.7	7.680	1.0	0.264	0.6	0.661
3.2	0.15	43	35	20	0.84	2909±24	5	0.2104	1.5	15.58	2.3	0.537	1.7	0.759
3.1	0.57	26	40	13	1.56	2918±36	1	0.2116	2.2	16.43	3.4	0.563	2.6	0.760
3.1re	0.01	29	42	14	1.53	2932±26	2	0.2135	1.6	16.60	2.4	0.564	1.7	0.734
1.1	0.10	121	89	60	0.76	2928 ± 14	0	0.2129	0.8	16.81	1.3	0.573	1.0	0.756
5.1	0.29	62	59	31	0.98	2913±19	-1	0.2109	1.2	16.73	1.9	0.575	1.5	0.774
4.2	0.25	67	63	33	0.97	2931 ± 25	0	0.2134	1.5	16.92	1.9	0.575	1.1	0.583
2.1	0.14	75	72	37	0.99	2932±17	0	0.2135	1.1	16.97	1.7	0.576	1.3	0.769
						Пр. 019, гранит, скв.	3534, 52.2° c.m.	, 35.1° в.д.						
7.1	0.11	319	183	87	0.59	2730±21	54	0.1886	1.3	8.240	1.4	0.317	0.6	0.446
3.1	0.48	181	283	52	1.62	2779±15	50	0.1943	0.9	8.940	1.2	0.334	0.8	0.654
4.1	0.32	142	134	45	0.98	2765±15	38	0.1927	0.9	9.700	1.2	0.365	0.8	0.644
1.2	0.23	152	141	55	0.96	2840±15	25	0.2017	0.9	11.69	1.3	0.421	0.9	0.681
2.1	0.05	356	187	139	0.54	2815±45	17	0.1986	2.7	12.44	2.8	0.454	0.7	0.236
5.1	0.01	91	91	37	1.04	2886±42	16	0.2074	2.6	13.45	2.8	0.470	1.1	0.390

0.725	0.751	0.750	0.713	0.922	0.736	0.609	0.741	0.772		0.964	0.697	0.973	0.974	0.982	0.962	0.979	0.933	0.952	0.913		0.757	0.836	0.702	0.688	0.637	0.781	0.769	0.739	0.779	0.773	0.831	0.755	0.816	0.787	0.759
0.8	1.0	0.8	1.1	6.3	1.4	0.8	1.1	1.1		1.5	1.5	1.4	1.4	1.4	1.5	1.4	1.6	1.5	1.6		0.6	0.4	1.9	2.6	1.3	0.8	0.0	1.4	2.2	1.4	0.6	1.3	0.6	0.9	1.8
0.509	0.519	0.525	0.544	0.546	0.566	0.571	0.574	0.574		0.542	0.543	0.545	0.546	0.546	0.551	0.553	0.590	0.591	0.601		0.521	0.540	0.540	0.541	0.545	0.561	0.568	0.573	0.575	0.576	0.508	0.549	0.604	0.606	0.607
1.1	1.3	1.1	1.5	6.8	1.9	1.2	1.5	1.4		1.5	2.1	1.5	1.5	1.5	1.5	1.5	1.7	1.6	1.8		0.8	0.5	2.7	3.7	2.1	1.1	1.2	1.9	2.9	1.8	0.8	1.7	0.7	1.2	2.4
14.55	14.87	14.98	15.41	15.46	16.19	16.28	16.57	16.51		15.11	15.00	14.92	15.09	15.04	15.33	15.53	17.75	18.05	18.22		15.30	15.66	15.78	15.79	15.93	16.46	16.63	16.71	16.79	16.83	15.62	17.38	19.35	19.38	19.55
0.8	0.8	0.7	1.1	2.6	1.3	1.0	1.0	0.9		0.4	1.5	0.3	0.3	0.3	0.4	0.3	0.6	0.5	0.7		0.5	0.3	1.9	2.7	1.6	0.7	0.8	1.3	1.8	1.1	0.4	1.1	0.4	0.7	1.6
0.2074	0.2078	0.2071	0.2054	0.2052	0.2074	0.2068	0.2096	0.2085	., 35.3° в.д.	0.2022	0.2006	0.1986	0.2006	0.1999	0.2018	0.2037	0.2184	0.2215	0.2199	., 35.3° в.д.	0.2130	0.2104	0.2119	0.2117	0.2121	0.2127	0.2123	0.2115	0.2116	0.2120	0.2230	0.2297	0.2325	0.2321	0.2336
6	7	9	2	2	0	-1	-1	-1	3743, 52.2° c.m	2	1	1	1	1	0	1	-1	0	-2	3780, 52.3° с.ш	8	5	5	5	4	2	1	0	0	0	13	8	1	0	1
2885±13	2888±14	2883±12	2870 ± 18	2868±43	2886±21	2880 ± 16	2902±16	$2894{\pm}14$	Пр. 020, гранит, скв.	2844±7	2831 ± 3	2815±6	2831 ± 5	2825±5	2841±7	2856±5	2969 ± 10	2991±8	2980±12	Пр. 022, гранит, скв.	2929±9	2909±5	2920 ± 31	2919±44	2921±26	2926 ± 11	2923±12	2917±21	2918±29	2921 ± 18	3002±7	3050 ± 18	3069±7	3066 ± 11	3077±25
1.26	1.70	0.93	1.13	0.77	1.32	06.0	0.97	1.15		0.37	0.30	0.22	0.21	0.48	0.08	0.05	0.23	1.81	0.91		0.50	1.16	1.43	0.79	1.59	0.87	0.92	1.55	1.22	1.08	0.17	0.41	0.12	0.52	1.19
67	74	86	42	151	33	93	73	59		233	210	343	359	540	221	446	101	145	61		974	601	28	480	19	111	66	45	17	41	331	47	272	107	24
187	274	173	98	234	87	166	140	134		181	131	155	159	533	83	48	44	504	104		1062	1450	84	789	62	193	180	135	41	87	121	39	60	112	53
153	166	192	89	316	68	189	149	120		501	451	732	765	1151	466	937	200	286	119		2175	1296	61	1032	40	230	203	90	34	83	756	66	524	204	46
0.01	0.17	0.13	0.40	1.61	0.06	0.01	0.15	0.01		0.03	0.01	0.05	0.03	0.03	0.05	0.07	0.04	0.01	0.01		0.02	0.02	0.71	0.02	0.49	0.01	0.06	0.37	0.01	0.14	0.12	0.26	0.09	0.20	0.24
1.1	11.1	9.1	8.1	2.2	10.1	6.1	10.2	12.1		2.1	5.2	4.1	8.1	7.1	1.1	6.1	5.1	3.1	1.2		2.1	10.1	2.2	1.1	11.1	13.1	3.1	5.1	6.1	7.1	4.1	9.2	12.1	9.1	8.1

табл. 1	KK		0.980	0.983	0.987	0.714	0.899	0.899	0.841	0.985	0.946	0.983		0.980	0.916	0.941	0.920	0.944	0.817	0.939	0.827	0.885	0.976		0.763	0.831	0.869	0.821	0.818	0.799	0.814	0.823	0.770	
ончание	<u>+</u> ,%	_	1.1	1.1	1.1	1.3	1.3	1.3	1.5	1.1	1.2	1.1		1.1	1.3	1.2	1.3	1.2	1.8	1.2	1.6	1.4	1.2		1.9	2.7	1.5	1.6	1.7	2.3	1.7	1.6	1.8	
Oĸ	206 Pb /238U	_	0.532	0.530	0.578	0.289	0.564	0.569	0.555	0.549	0.542	0.543		0.490	0.576	0.538	0.534	0.527	0.596	0.600	0.536	0.540	0.560		0.568	0.573	0.568	0.557	0.568	0.563	0.579	0.561	0.568	
	<u>+</u> ,%		1.2	1.1	1.1	1.8	1.4	1.5	1.8	1.1	1.2	1.2		1.2	1.4	1.3	1.4	1.3	2.2	1.3	1.9	1.5	1.2		2.5	3.2	1.7	1.9	2.1	2.9	2.1	2.0	2.4	
	207 Pb /235U	_	14.65	14.64	16.25	5.074	16.34	16.44	15.79	15.11	16.16	14.93		13.40	17.46	15.28	14.74	14.43	18.98	17.80	14.57	14.93	15.44		16.38	16.81	16.37	16.15	16.67	16.48	16.14	16.41	16.24	²⁰⁷ Pb/ ²³⁵ U.
	<u>+</u> ,%		0.2	0.2	0.2	1.3	0.6	0.6	1.0	0.2	0.4	0.2		0.2	0.6	0.4	0.5	0.4	1.2	0.5	1.1	0.7	0.3	Ť	1.6	1.8	0.8	1.1	1.2	1.7	1.2	1.1	1.5	р/238U и
	²⁰⁷ Pb/ ²⁰⁶ Pb	35.3° в.д.	0.1999	0.2002	0.2038	0.1275	0.2104	0.2096	0.2065	0.1998	0.2162	0.1997	35.2° в.д.	0.1987	0.2197	0.2060	0.2001	0.1988	0.2310	0.2152	0.1971	0.2005	0.2001	° с.ш., 40.1° в.д	0.2091	0.2127	0.2090	0.2102	0.2128	0.2125	0.2022	0.2121	0.2072	тношений ²⁰⁶ F
	Дискордант- ность, %	8744, 52.2° c.m.,	ŝ	б	ς. Υ	26	1	0	1	0	6	1	3782, 52.3° с.ш.,	10	2	4	2	б	1	-3	1	2	-1	ий карьер, 50.2	0	0	0	2	1	2	-3	2	-1	я изотопных о
	BospacT ²⁰⁷ Pb/ ²⁰⁶ Pb, MJH JIET	 Пр. 001, гранит, скв. 3	2825±4	2828±3	2857±3	2064±23	$2908{\pm}10$	2902±10	2878±16	2824±3	2953±7	2823±3	Пр. 002, гранит, скв.	2816 ± 4	2979±9	2874±7	2827±9	2816±7	3059±20	2945±7	2802±17	2831±12	2827±4	78, гранит, Шкурлатск	2898±27	2926±29	2898±13	2907±18	2927±19	2925±28	$2844{\pm}20$	2922±18	2884±25	ибками опрелелени
	232Th/238U	_	0.74	0.69	0.08	0.42	0.70	1.31	1.85	0.91	1.43	0.91		0.21	0.45	0.48	0.93	0.72	1.19	0.52	1.08	1.76	1.22	Пр. 03	1.07	1.03	1.44	0.91	1.13	1.24	1.55	1.13	1.45	ии межату оп
	²⁰⁶ Pb*		766	1320	1300	51	91	90	37	1170	318	1010		787	103	193	121	226	25	175	38	71	734		25	10	58	43	26	11	26	31	21	шкгорос
	Th T/T		1197	1930	199	83	128	232	138	2187	938	1923		376	90	196	238	348	56	170	87	259	1808		53	21	165	79	59	26	78	70	61	ишиент 1
	U		1678	2879	2626	204	189	183	77	2483	679	2173		1873	208	417	264	499	48	340	83	153	1526		52	21	118	90	54	22	52	64	43	феозф
	²⁰⁶ Pb _c , //		0.01	0.31	0.01	0.45	0.07	0.08	0.16	0.01	0.76	0.01		0.01	0.01	0.04	0.01	0.07	0.25	0.01	0.11	0.01	0.01		0.24	0.21	0.04	0.22	0.12	0.01	0.10	0.11	0.42	іание. КК
	Номер зерна и точки		1.1	2.1	3.1	4.1	5.1	6.1	7.1	8.1	9.1	10.1		1.1	2.1	3.1	4.1	5.1	6.1	7.1	8.1	9.1	10.1		1.1	2.1	3.1	5.1	6.1	7.1	8.1	9.1	10.1	Приме

Рис. 4. Нормализованное на хондрит распределение REE в цирконе.

низкотемпературном процессе сохраняет четкую зональность и огранку. Большая часть зерен дискордантна (см. табл. 1). Вариации содержания U, Th, отношения Th/U обычны для магматического циркона. Измерено 16 зерен; полученный возраст 3029±14 млн лет отражает время кристаллизации (см. рис. 3). В пр. 027 несколько зерен имеют двухфазное строение: конкордантный возраст ядер равен 3091±28 млн лет (см. табл. 1).

Позднее, в период 2.95—2.85 млрд лет, внедрилась серия интрузий основных пород. Соответствующие возрасты получены для двух массивов габбро (пробы 003 и 051), которые предположительно относились к палеопротерозойскому смородинскому комплексу. Порода пр. 003 имеет габбровую структуру и состав: Орх, Срх, Pl (An₆₃), реликты Ol. Циркон овальной формы, с осцилляторной зональностью.

Данные для хондрита CI, по [McDonough, Sun, 1995]. Цифры у линий отвечают номерам зерен циркона. *а*—*е* — пояснения см. в тексте.

Содержание редких и редкоземельных элементов (г/т) в цирконе архейских пород Воронежского массива

Таблица 2.

	L.	.15	1.3	19	64	23	59	5.2	8.7	03	64	9.8	3.9	50	84	0.4	72	67	1.1	38	t11	67	11	62	.16	8.4	330	46
	4	.0 6	4	.0	5	5.	0	3	8	4	9 3	5	-1.	3	8		4	0 11	5	7	95	7 1	9	1	<u> </u>	7 5	38	8
12	3.3	5.20	40.	15.9	225	412	175	148	251	174	157	269	17.9	129	183	125	17.4	1793	22.0	5.9′	1055	120	294	0.4	0.68	1.0′	489	102
Пр. 04	3.2	80.08	5.76	0.12	1.49	3.88	0.69	23.9	107	222	377	60.2	11.4	312	20.3	24.9	0.81	1255	7.38	2.63	7832	55.9	158	0.35	0.22	14.3	7147	831
	3.1	0.06	4.76	0.05	0.86	2.25	0.36	16.3	80.4	171	302	50.8	14.2	228	2.52	21.6	0.58	1023	7.27	0.72	7842	47.4	148	0.32	0.18	20.5	8241	816
	2.1	0.14	9.20	0.09	1.08	1.46	0.65	8.09	30.1	68.8	152	25.9	10.2	157	39.1	9.39	0.74	387	6.67	0.83	8814	16.9	76.9	0.22	0.58	20.4	1821	737
	7.2	19.89	114	13.5	69.3	28.3	14.1	39.6	86.2	154	319	43.1	10.8	256	524	70.4	21.0	971	14.7	21.6	4952	256	1980	0.13	1.28	1.69	21.0	950
	7.1	.94	11.7	.98	5.26	t.27	1.51	5.55	[4.3	21.6	42.8	5.18	13.1	26.2	372	7.91	1.92	165	15.4	9.58	182	36.0	428	.08	0.87	2.95	53.6	876
	5.2	.39 (.20	.38	.30 (.86	.57	.77	7.3	5.9	1.2	0.1	0.5	2.1	4.8	.66 3	.06	79	7.0	.71	338 6	9.3	81	.08	.58 (.51	348	57
3	6.1 (.14 0	.32 7	.03 0	.17 2	.29 1	.31 0	.77 4	4.6 1	2.4 3	19 7	9.7	.53 1	5.0 6	71 9	6.1 11	56 2	21 1	7.5 1	.01 5	334 9	0.4 2	53 3	.06 0	0 69.	.09 4	66 2	87 7
Пр. 07	.2	09 1	8.0 9	96 1	30 6	24 4	68 1	71 7	0.4 2	2.0 5	2.5 1	3.1 1	4.1 8	9.4 2	56 1	2.9 1	23 2	35 3	l.1 1	98 3	347 6.	0.0 3	91 5	12 0	90 06	24 2	15 1	90 7
	1 5	.9 1.	12 18	31 0.	.9 6.	.3 4.	.4 1.	7 7.	34 2(3 42	24 92	69 13	.2	19	54	2	14 1.	58 2	.0 5	34 3.	65 88	96 6(45 4	43 0.	15 0.	14 4.	+0	8
	2 5.	10 10	5 17	36 9.	80 60	54 31	89 18	96 76	0 23	.9 51	8 10	4 15	5 34	.8 26	0 15	02 3.	12 3.	8 23	2 61	9 5.(52 85	.8 10	1 25	8 0.4	54 1.	4.	6 14	0 85
	4.	8 1.0	1 15	5 0.8	4 4.8	1 3.5	6 0.8	5 7.0	6 25	9 52	2 11	0 18	1 28	8 13.	6 26	2 30.	2 2.4	4 30	1 22	2 6.0	56 76;	7 81	4 46	3 0.1	4 0.5	0 4.0	8 17	8 85
	4	1 2.2	8 22.	3 1.8	1 11.	5 6.3	2 1.6	2 9.7) 26.	8 47.	10	3 17.	4 9.3	10	2 75.	5 16.	5 1.6	7 26	8 22.	7 2.4	63 (632	5 59.	6 45	4 0.1	2 0.6	5 2.6	71.	18
	6.2	0.9	6.8	0.43	2.2	2.4	1.32	17.2	91.(148	217	31.	36.4	252	8.73	19.5	0.93	100	22.8	2.6	1106	64.6	161	0.0	0.62	2.60	331	806
	6.1	0.03	17.5	0.10	1.29	3.66	0.51	22.7	119	269	464	75.0	0.92	335	0.98	14.1	0.87	1466	29.6	1.14	11848	83.7	173	0.48	0.17	84.4	27782	774
	5.2	1.16	9.66	0.76	4.50	3.01	1.33	15.0	65.7	106	155	23.0	54.4	174	20.4	35.7	1.05	60L	24.5	5.24	10926	74.4	1775	0.04	0.60	2.48	191	869
	5.1	0.07	13.0	0.05	0.74	1.96	0.33	15.2	94.4	260	536	90.8	1.62	337	0.93	12.2	0.82	1185	32.3	0.85	3127	86.6	202	0.43	0.18	50.7	2052	761
	4.2	60.	.26	.70	.22	.40	.17	3.8	80	667	t04	3.0	5.1	588	0.7	4.9	.74	217	9.7	.26	2698 1	9.0	609	.01	.07	.56	1 1	179
∏p. 01€	1	1 90	6 6	10 0	19 4	70 3	36 3		5	2 20	4	12 5	29 2	11	.7	.1	17 1	29 2	 	36 3	80 12	8.	1 2	47 0	16 1	6.	+01 4	00
	4.	7 0.0	14	0.0	1.		0.0	7 17	11	30	61	10	0.0	35	22	15		4 14	44	+	8 122	98	1 21	0.4	0	36	114	18
	2.2	0.37	4.82	0.20	1.30	1.77	0.88	15.7	8.68	132	179	24.5	24.0	281	6.89	13.7	0.74	100	45.7	1.44	1122	51.7	148]	0.03	0.51	4.31	653	772
	2.1	0.06	8.03	0.06	0.61	1.62	0.27	11.6	67.9	176	354	59.7	0.56	242	1.83	15.4	0.65	888	46.3	0.95	12143	40.5	91.9	0.44	0.19	32.9	9186	782
	1.2	1.42	12.5	1.08	6.17	4.48	2.17	21.0	94.6	163	249	36.1	36.5	252	62.5	15.1	2.08	1061	40.0	6.88	10504	55.9	1468	0.04	0.68	2.43	244	781
	1.11	0.14	21.1	0.62	7.86	12.3	1.81	62.2	293	653	1130	171	0.01	247	0.74	38.6	1.18	3325	86.3	1.19	1240	205	272	0.75	0.20	17.4	1896	878
Komito-	нент	La	Ce	Pr	Nd	Sm	Eu	Gd	Dy	Er	Yb	Lu	Li	Р	Ca	Ti	Sr	Y	Nb	Ba	Hf 1	Th	U	Th/U	Eu/Eu*	Ce/Ce*	$(Lu/La)_N$ 1	T(Ti), °C

	9.2	1.19	11.0	1.06	7.34	6.61	2.46	20.9	41.2	60.8	103	14.9	10.0	78.7	149	26.3	1.98	411	23.4	8.49	6026	53.4	265	0.20	0.64	2.36	120	836
	9.1	2.73	35.5	2.30	16.7	13.3	6.36	42.5	115	211	385	56.2	10.9	248	82.6	35.8	1.76	1363	21.0	4.60	6518	197	507	0.39	0.81	3.43	199	870
	8.2	0.30	8.06	0.24	2.05	3.21	0.38	11.6	24.3	39.1	69.6	8.72	10.2	80.9	32.6	17.7	0.42	212	26.4	1.84	9395	57.0	203	0.28	0.19	7.21	278	796
	8.1	0.77	15.1	0.59	4.57	5.16	1.34	16.9	48.3	101	200	31.6	15.5	112	57.4	17.2	2.07	598	14.4	5.79	8008	79.0	565	0.14	0.44	5.44	397	793
68	7.2	0.51	8.04	0.32	2.74	3.64	0.50	12.7	32.0	57.4	88.7	12.1	6.68	82.4	430	15.3	2.60	243	13.0	10.8	8745	65.7	211	0.31	0.22	4.83	231	782
Пр. 0	7.1	0.35	28.8	0.36	2.95	6.51	0.81	36.0	167	384	642	97.8	28.3	657	553	26.6	6.93	2363	19.3	30.5	11816	376	1343	0.28	0.16	19.5	2655	837
	3.2	0.07	3.18	0.08	1.54	3.44	0.17	12.2	23.1	22.0	26.7	3.82	5.73	18.0	0.65	26.0	0.48	174	33.6	0.64	13695	40.4	144	0.28	0.08	10.0	515	835
	3.1	0.23	25.9	0.54	6.60	11.5	2.87	52.5	197	383	722	108	3.00	142	123	51.4	0.74	2404	30.7	2.81	7746	260	431	0.60	0.36	17.9	4558	912
	1.2	0.09	3.64	0.14	2.13	4.26	0.24	13.5	26.8	29.4	39.8	5.88	5.66	65.5	6.61	19.3	1.93	215	41.0	0.66	11961	63.2	187	0.34	0.10	7.91	648	805
	1.1	0.33	16.0	0.32	2.74	3.74	1.20	17.5	75.0	183	403	65.3	3.40	81.3	28.4	30.4	0.39	952	45.4	1.15	8590	111	314	0.35	0.45	11.9	1936	852
	10.1	16.3	343	43.9	307	87.3	20.4	123	164	187	283	47.9	17.6	178	234	96.9	13.38	1352	22.4	525	8837	133	246	0.54	0.60	3.10	28.3	993
	9.1	0.24	21.1	0.39	5.96	10.4	2.61	56.0	222	413	676	109	3.37	269	1.59	12.9	0.67	2489	24.1	0.99	6768	144	240	0.60	0.33	16.6	4356	766
	8.1	0.03	5.72	0.02	0.39	1.24	0.32	7.39	32.9	75.1	143	26.2	8.80	54.9	0.04	5.95	0.44	400	17.7	0.55	7869	19.1	62.0	0.31	0.32	54.1	9172	669
	7.1	10.3	104	21.0	136	23.8	6.92	46.8	117	252	482	82.4	15.6	196	181	48.4	6.68	1537	36.4	58.8	7278	75.0	180	0.42	0.63	1.71	76.8	904
0.025	6.1	0.12	7.53	0.11	1.14	2.10	0.70	13.7	72.5	171	349	62.1	11.7	147	0.73	9.61	0.60	956	23.0	0.92	6586	43.2	127	0.34	0.40	15.9	4890	740
П	4.1	4.11	37.6	6.51	37.2	14.4	3.16	44.5	124	203	320	50.9	0.89	90.8	31.0	16.9	1.16	1275	40.7	5.56	6731	111	104	1.07	0.38	1.78	119	791
	3.1	0.13	8.72	0.07	0.93	2.43	0.55	13.7	53.8	159	308	51.2	5.80	189	0.29	11.2	0.47	864	50.8	0.61	5486	29.3	95.8	0.31	0.29	22.7	830	753
	1	22 (80	58	96	20 2	39 (L.	4	L2	62	5	27 (88	42 (2	54 (32	9.	27 (87 6	L.	52	45 (39 (95	43 3	23
	2.	0.2	8.(0.2	5.6	4.		25	10	22	42	72	2.6	18	1.4	11	0.5	13	46	1.5	909	56	12	0.4	0.0	2.7	32,	75
	1.1	0.30	10.8	0.58	6.14	6.76	2.04	29.1	93.9	184	351	57.4	10.7	148	2.55	8.42	0.61	1123	98.4	0.97	6642	47.6	110	0.43	0.44	6.23	1822	728
Louronou	NUMIDHCHI	La	Ce	Pr	Nd	Sm	Eu	Gd	Dy	Er	Чb	Lu	Li	Ρ	Са	Ti	Sr	Υ	Nb	Ba	Hf	Th	U	Th/U	Eu/Eu*	Ce/Ce*	$(Lu/La)_N$	T(Ti), °C

\sim
Ë.
6
g
1 e
Ξ
в
ЬF
10
Ä
0

					Πp.	065							Пп 0(5					μU	151			
Компонент -	1	2.1	3.1	4.1	5.1	6.1	8.1	10.1	11.1	11.2	1-1	1.2	2.1	3.2	7.1	9.1		6	2.1	3.1	4.1	6.1	8.1
ę	7 37	3.64	0 1 2	0 74	0.05	010	0 13	1 83	0.75	0 5 0	1 29	0.07	10	0000	05 0	0 90			30	147	0 10	0 10	010
Ce	28.4	84.0	10.0	94.5	9.82	9.26	9.88	19.2	21.1	10.1	99.7	77.1 5	3.5	.06	02.5 6	4.1	00	71 6	3.3	84.4	95.8	58.4	15.5
Pr	3.62	1.58	0.07	1.63	0.04	0.21	0.22	0.88	0.44	0.72	1.40	0.16 (0.70 0	.86 (.21 1	.26 0.	35 1	25 1	.32	1.87	1.30	0.29	0.22
Nd	28.9	9.34	0.76	11.2	0.48	3.32	3.34	5.85	7.18	4.93	12.4	2.26	12.7	6.19	3.31 1	5.8 5.	59 7	96 1	8.4	23.1	18.1	3.32	3.07
Sm	29.2	6.17	1.74	8.26	1.11	6.50	5.47	5.18	10.8	5.03	10.5	3.22	16.6	.91	5.14 1	7.5 7.	66 4	2.5 1	7.4	24.4	19.0	3.37	5.54
Eu	10.4	1.61	0.44	2.05	0.19	1.83	1.18	1.45	2.71	1.67	2.32	0.76	1.05	.30	1.19 4	.54 1.	85 1	11 4	.78	6.65	4.43	0.96	1.15
Gd	61.3	22.1	11.0	24.3	7.07	29.8	22.0	22.5	46.9	15.5	30.4	14.6	59.1	0.4	22.0 5	7.1 28	8.1 5	57 57	7.1	76.4	61.4	13.5	24.5
Dy	128	61.0	44.4	62.9	31.1	87.6	73.1	92.7	133	42.1	82.7	50.9	151 2	21.3	5.7	35 80	5.1 6	19	[43	188	162	43.7	98.5
Er	154	108	102	112	72.1	151	132	214	229	77.4	142	102	246	9.1	128	117 1	58 3	09	219	285	274	84.9	236
Yb	257	192	199	196	141	246	230	419	378	141	251	200	369 4	17.3	220 3	20 2	80 3	66	332	423	420	154	463
Lu	39.0	29.1	34.9	31.9	25.1	40.4	38.7	73.8	62.1	22.9	43.3	33.0 (50.1	75	34.1 5	1.7 43	7.1 6	9.0	2.7	67.9	68.0	26.2	80.6
Li	48.6	36.5	26.8	55.1	43.8	13.3	17.9	30.9	21.7	23.7	47.3	55.2	[4.3]	9.6	t0.8 8	.80 3.7	7.1 7	5.0 1	3.4	17.7	22.7	46.1	3.02
Р	109	283	21.7	126	62.0	135	130	823	208	162	219	86.8	222 8	87.4	201 2	80 2	02 1	23	69	193	188	116	205
Ca	82.2	177	2.93	9.09	0.68	5.68	1.81	1074	61.7	48.5	37.9	0.47	[06.]	9.2 (0.27 0	.68 5.	13 6	77 5	.86	3.65	0.47	2.03	2.67
Ti	17.1	27.8	4.39	18.5	2.09	6.03	6.35	12.0	9.23	11.9	17.4	13.4	25.0 2	1.4	9.1 3	4.3 1.7	7.8 1	84 2	6.8	27.4	24.0	17.7	13.3
Sr	6.12	2.11	0.66	1.17	0.58	0.42	0.49	2.74	0.69	1.50	1.20	0.46 ().68 (.87 (0.51 0	.49 0.	57 4	9.0 0.6	.63	0.50	0.46	0.41	0.53
Y	1068	666	591	869	400	898	797	1205	1435	529	859	621 1	533	236	742 1	153 9.	43 23	861 1	364	1786	1677	488	1302
Nb	45.0	24.9	24.0	30.2	18.4	14.1	15.1	14.7	11.8	8.8	10.2	11.4	13.3	8.76	2.2	.98 1	1.3 1	2.0 1	1.2	10.9	11.7	5.83	8.23
Ba	12.3	1.79	1.02	2.44	0.99	1.12	1.22	1.67	2.47	2.40	2.26	2.38	[.11	00	1.29	.37 1.	95 3	1.0 1	.22	1.95	0.80	1.17	1.44
Hf	8033	7118	9903	7543	10830	6107	7511	6438	7010	7054	7757	5 6662	422 9	947 7	514 6	299 74	160 8′	772 6	712 0	5720	7618	7655	7145
Th	85.3	35.1	40.4	65.8	45.8	52.6	57.4	88.9	151	37.2	81.1	57.2 {	30.1	132	5.2 5	2.0 83	3.4 5	27 7	'5.1	109	109	55.8	74.4
U	275	51.2	162	100	193	122	135	242	268	114	119	121	72.7	578 .	78.6 5	3.1 1	10 4	27 6	9.6	96.5	111	86.9	203
Th/U	0.31	0.69	0.25	0.66	0.24	0.43	0.43	0.37	0.56	0.33	0.68	0.47	1.10 ().23 (0.70 0	.98 0.	76 1	.23 1	.08	1.13	0.98	0.64	0.37
Eu/Eu*	0.75	0.42	0.31	0.44	0.21	0.40	0.33	0.41	0.37	0.58	0.40	0.34 (.39 (.62 ().34 0	.44 0.	38 0	.70 0	.46	0.47	0.40	0.43	0.30
Ce/Ce*	2.37	8.48	26.2	20.8	54.6	15.5	14.1	3.66	15.3	4.10	18.0	180 8	87.4	2.22	214 2	7.2	26 1	.86 2	4.2	21.8	47.2	84.7	25.5
$(Lu/La)_N$	161	77.0	2716	413	622	3905	2809	388	2378	440	324	4658 ¢	010 8	3.3 (405 1	925 43	31 1	0.9 1	672	395	3520	2648	7968
T(Ti), °C	792	842	675	800	622	700	704	759	736	758	794	769	831	815	804 8	865 7	96 11	387 8	346	841	827	796	769

¹ Номер зерна и точки.

Девять зерен имеют конкордантный возраст 2908±11 млн лет. Их геохимические характеристики (Th/U, $(Lu/La)_N$) соответствуют магматическому генезису (см. табл. 2). Габбро-амфиболит пр. 051 определенно не относится к смородинскому комплексу, от которого отличается структурой, составом и степенью метаморфизма. Порода состоит из Pl (Ol-And), Hbl, Qz и Bt. Циркон характеризуется четко выраженной осцилляторной зональностью. Все U-Pb изотопные данные аппроксимируются дискордией, с верхним пересечением конкордии в значении 2920±12 млн лет (см. табл. 1, рис. 3). Лишь зерно 8 имеет конкордантный возраст 2050±29 млн лет. Циркон имеет крутой наклон спектра REE, Eu- и Ce-аномалию, что характерно для магматического циркона. Отличается от древних зерен меньшим содержанием LREE и наиболее высоким содержанием Lu (см. рис. 4, табл. 2). К этому этапу относится и формирование гранодиорита (пр. 060), который содержит гомогенную популяцию магматического циркона. Большинство зерен имеет тонкую зональность роста, хорошо выраженные кристаллографические формы. Ядра и оболочки отсутствуют. Цирконы низкоурановые, Th/U = 1.1 (см. табл. 1). Время кристаллизации гранодиорита определяется конкордантным кластером 2924±14 млн лет (см. рис. 3).

Еще один массив метагаббро (пр. 059), расположенный в юго-западной части КБ, сложен псевдоморфозами Olg-Ab, Act, Bt, Ep по более основному плагиоклазу и мафическим минералам, содержит кварц, сохраняет признаки магматической (габбровой) структуры. Циркон пр. 059 весьма однороден, грубозональный. Конкордантный возраст циркона составляет 2885±12 млн лет (см. рис. 3). На этом же возрастном уровне происходило становление лейкократовых ультраметаморфических гранитов (пробы 019, 020, 022). В пр. 019 установлены зерна циркона с четкой осцилляторной зональностью. Часть кристаллов теряет прозрачность, подчеркивая различную степень проявления вторичных изменений. Все 15 фигуративных точек аппроксимируются дискордией с верхним пересечением конкордии в значении 2900 ± 12 млн лет (см. рис. 3). Циркон пр. 020 (см. табл. 1) представлен призматическими зернами со следами зональности и веществом оболочек. Циркон гомогенных кристаллов и вещество оболочек дают два конкордантных кластера: 2984±12 и 2897±8 млн лет. Гранит пр. 022 (см. табл. 1) содержит два типа циркона. Первый тип представлен короткопризматическими зернами с секториальной зональностью. Для этого типа циркона получен возраст 3073±14 млн лет (см. рис. 3). Второй тип представлен удлиненными непрозрачными зернами, которые имеют возраст 2917±14 млн лет (см. рис. 3). Таким образом, в начале периода ультраметаморфизма преобладали, по-видимому, процессы анатексиса, из расплавов которого кристаллизовался преимущественно магматический циркон.

Конец мезоархея (2.85—2.80 млрд лет) характеризуется проявлением высокотемпературного метаморфизма и развитием ультраметаморфических гранитоидов, при формировании последних значительную роль играли метасоматические процессы.

Высокотемпературный метаморфизм датирован в оливиновом габбронорите белогорьевского комплекса (пр. 073), циркон которого характеризуется присутствием широких кайм, обрастающих палеоархейские ядра, рассмотренные выше. Каймам присуще тонкозональное строение, но имеют практически нефракционированное распределение REE (среднее значение (La/Lu)_N 118), низкое Th/U = 0.1 (среднее значение), что соответствует его метаморфическому генезису (см. табл. 2, рис. 4, ∂). Конкордантный возраст кайм составляет 2822±19 млн лет (см. рис. 3). Метаморфическая переработка циркона отражена и в пр. 016, палеоархейские ядра которой, рассмотренные выше, имеют каймы обрастания, несогласные с внутренней зональностью ядер. Особенности состава кайм — низкое значение Th/U, пологий спектр распределения REE (см. табл. 2, рис. 4, a) — указывают на их метаморфическое образование 2844±13 млн л. н. (см. рис. 3).

Субщелочные граниты (пр. 001 и 002) содержат длиннопризматический (до 50×200 мкм) циркон с неотчетливой зональностью, высокоурановый. Геохимические характеристики и возраст циркона обеих проб сходен: 2825 ± 3 и 2821 ± 5 млн лет соответственно (см. рис. 3). В гранитах присутствуют единичные более древние унаследованные зерна циркона. Возраст циркона гранита (пр. 001), измеренный в 10 зернах, по пересечению дискордией конкордии имеет возраст 2825.1 ± 3.4 млн лет (рис. 3). Часть зерен, лежащих на дискордии, имеет по 207 Pb/ 206 Pb более древний возраст — до 2.9 млрд лет (см. табл. 1). Пр. 002 содержит более древние унаследованные кристаллы — от 2945 до 3050 млн лет (см. табл. 1). Образование гранитов, измеренное по 10 точкам, имело место 2820 ± 4.7 млн л.н. (см. рис. 3) и происходило в условиях гранулитового метаморфизма, возраст которого определен равным 2819 ± 6 млн лет [Савко и др., 2009]. Судя по температуре кристаллизации циркона, определенного по содержанию титана, все породы мезоархея кристаллизовались при высоких температурах: магматические цирконы при >700 °C, метаморфические при >800 °C (см. табл. 2).

На Украинском щите зеленокаменные пояса ЗКП изучены в ПП, СПП и ДБП. Имеются указания на их присутствие в Ингульской провинции (ИП), которая имеет ряд сходных геологических черт и сходное глубинное строение с соседней СПП [Щербаков, 2005].

В ПП зеленокаменные пояса образуют узкие, иногда прерывистые структуры, имеющие тектонические контакты с окружающими породами [Лысак и др., 2004] (см. рис. 2). Нижние части разреза сложены коматиит-толеитовой серией, верхняя часть — кислыми, реже средними вулканитами. Имеются единичные значения U-Pb возраста, определенные методом TIMS: 3095±43 млн лет (метаандезит Новогоровской структуры) и 2850±25 млн лет (метаандезит Гуляйпольской структуры) [Щербак и др., 2005].

К началу мезоархея в ПП относится процесс метаморфизма западно-приазовской серии, в интервале времени 3120—3000 млн лет (см. табл. 3). На существенное значение в строении ПП процессов этого возраста указывают результаты U-Pb и Lu-Hf изучения детритового циркона в осадках Сорокинской и Федоровской структур — присутствие кайм замещения с отрицательными значениями $\varepsilon_{\rm Hf}$ [Бибикова и др., 2010; Claesson et al., 2015].

Эндогенные процессы второй половины мезоархея (2.95–2.85 млрд лет) в ПП представлены основными и кислыми магматическими породами. Массивы основного и ультраосновного состава в Приазовье встречаются повсеместно [Усенко, 1960], но их возраст ранее не определялся. Датирован возраст габбро и кварцевых диоритов обиточненского комплекса [Бибикова и др., 2008] и основных даек Орехово-Павлоградской зоны [Lobach-Zhuchenko et al., 2014], становление которых происходило в интервале времени 2.91—2.94 млрд лет. Такой же возраст имеет шевченковский комплекс тоналит-трондьемитов [Бибикова и др., 2008]. Эти интрузии прорывают деформированные и метаморфизованные породы западно-приазовской серии, что наблюдалось авторами в центральной части Обиточненского «купола». Ряд определений возраста циркона гранитоидов ПП методом TIMS [Щербак и др., 2005] позволяет предполагать их широкое распространение в этот период и за пределами западной части ПП, что также поддерживается присутствием детритового циркона аналогичного возраста в осадках [Сlaesson et al., 2015].

Наилучшим образом архейские структуры ЗКП сохранились в СПП, где вулканиты секутся практически недеформированными интрузиями гранитов с возрастом 2.83–2.80 млрд лет [Колий и др., 1991; Бобров, 1993; Щербак и др., 2005; Сукач, 2014]. Зеленокаменные ассоциации СПП были сформированы в два этапа. В первый этап — 3.19—3.14 млрд лет — образованы порфириты, дациты и риолиты Высокопольской, Верховцевской и Чертомлыкской структур. Аульский комплекс, который рассматривался как фундамент ЗКП, содержит гнейсотрондьемиты с возрастом 3196±13 млн лет [Samsonov et al., 1996]. Для пород ТТГ серии (см. рис. 2, сурский комплекс) [Бобров, 1993] определены значения возраста 3.17—3.10 млрд лет [Самсонов и др., 1993; Щербак и др., 2005]. Близкий с вулканизмом первого этапа возраст 3181 ± 3 млн лет получен и для метагаббро [Самсонов и др., 1993]. Второй этап вулканизма представлен кислыми вулканитами Сурского и Белозерского поясов СПП (3077—2954 млн лет) [Samsonov et al., 1993; Щербак и др., 2005]. Синхронно позднему этапу вулканизма происходило становление горнблендитов, гранодиоритов Александровской интрузии, габбро и габброноритов Софиевской интрузии (3.04—3.09 млрд лет) [Щербак и др., 2005]. В северо-восточной части СПП в пределах Славгородского блока формировались комплексы, метаморфизованные в гранулитовой фации. Возраст магматического пиркона чарнокита равен 3014±7 млн лет, а время гранулитового метаморфизма — 2988±2 млн лет [Бобров и др., 2010]. В это время в северо-восточной части СПП был сформирован лоцкаменский комплекс диоритов, возраст которого отвечает 2.97—2.99 млрд лет. В зонах СПП, испытавших тектонометаморфическую переработку, развиты гнейсы и мигматиты, относимые к днепропетровскому комплексу. Возраст гнейсов $(3101 \pm 98, 3062 \pm 30 \text{ млн лет})$ сходен с возрастом массивов тоналит-трондьемитового состава и гранулитами Славгородского района.

Разрез ЗКП завершается осадками белозерской серии, несогласно перекрывающей нижележащие вулканиты. Судя по характеристикам детритового циркона, источником сноса являлись преимущественно вулканиты и породы ТТГ серии [Бибикова и др., 2010]. На границе с неоархеем внедрялись массивы гранитов токовского и мокромосковского типов, секущие осадки белозерской серии.

На территории ДБП зеленокаменные пояса сохраняются в виде небольших тектонических линз. Они сложены кристаллосланцами, отвечающими по составу базальтам и коматиитам [Фомин и др., 1980; Лобач-Жученко и др., 2014]. Возраст кристаллосланцев по изотопному составу неодима оценивается в 3.4 — 3.2 млрд лет [Балтыбаев и др., 2014]. В Среднем Побужье, в северной сдвиговой зоне Одесского карьера определен возраст эндербита 3.15 млрд лет [Лобач-Жученко и др., 2013]. Возраст 2958±85 млн лет получен для гранулитового метаморфизма кристаллосланцев [Балтыбаев и др., 2014].

Последнее событие в мезоархее ДБП — метаморфизм, наложенный на палеоархейские гнейсоэндербиты. Об этом свидетельствует нижнее пересечение практически всех дискордий, построенных для эндербитов Побужья, которое отвечает возрасту 2.80—2.85 млрд лет [Лобач-Жученко и др., 2013; Claesson et al., 2015].

2.80—2.65 млрд лет (неоархей)

Эндогенные процессы неоархея на территории Сарматии проявлены значительно меньше. На Украинском щите, в ДБП к этому этапу, возможно, относится образование литинского комплекса эн-

дербитов, U-Pb возраст которого определен методом TIMS как 2815±15 млн лет [Щербак и др., 2005]. Важным событием являлось образование в неоархее бугской протоплатформенной осадочной серии. Изучение детритового циркона из кварцитов бугской серии показало, что возраст осадконакопления не моложе 2.7 млрд лет [Shumlyansky et al., 2015]. Все породы в конце архея испытали сильнейшие деформации и гранулитовый метаморфизм [Лобач-Жученко и др., 2013].

В Среднепреднепровской провинции в неоархее на ее западной границе имело место становление анновских гранитов с возрастом 2.61—2.62 млрд лет [Щербак и др., 2005].

В Приазовской провинции в интервале 2.78—2.84 млрд лет были сформированы небольшие интрузии гранитов и аплитов [Щербак, Пономаренко, 2000], произошел метаморфизм пород западно-приазовской серии [Бибикова и др., 2008]. В восточной части провинции в неоархее, судя по возрасту ранней генерации циркона, были сформированы массивы эндербитов и чарнокитов [Щербак и др., 2005].

В Росинско-Тикичской (РТП) и ИП архейские породы датированы [Щербак и др., 2005], но недостаточность геологических и геохронологических данных не позволяет установить масштабы и точный возраст их формирования.

В Воронежском кристаллическом массиве к позднему архею относятся гранитоиды салтыковского мигматит-плагиогранитного комплекса [Чернышов и др., 2009]. В пр. 027 циркон представлен призматическими, однофазными, зональными, хорошо ограненными кристаллами, с повышенным Th/U = 1.4 (см. табл. 1). Для них получен конкордантный возраст 2669±14 млн лет (см. рис. 3), соответствующий времени магматической кристаллизации. Несколько зерен имеют ядра с конкордантным возрастом 3091±28 млн лет, что отвечает возрасту протолита пр. 070.

На примере железистого кварцита (пр. 068) определен возраст метаморфизма: тонкозональные оболочки циркона имеют конкордантный возраст 2784 ± 11 млн лет (см. рис. 3). Высокая температура образования кайм (средняя температура 808 °С, см. табл. 2) соответствуют условиям гранулитовой фации метаморфизма. *РТ*-параметры метаморфизма, определенные С.М. Пилюгиным [2007], соответствуют T = 950—1000 °С и P = 10—11 кбар.

Таким образом, на границе мезо- и неоархея в КБ датирован гранулитовый метаморфизм и отмечен случай преобразования более древнего (около 3.1 млрд лет) гранитоида (салтыковский комплекс).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Датирование реликтов палеоархейских пород в обоянском комплексе КБ, в Приазовье и Днестровско-Бугской провинции (табл. 3) указывает на присутствие в Сарматии древнейшей континентальной коры, сформированной в интервале 3.75—3.60 млрд лет. По мнению Н.П. Щербака и А.Н. Пономаренко [2000], УЩ представлял собой в архее единый кратон. По мнению Е.Б. Глевасского и некоторых других геологов [Щербаков, 2005], формирование УЩ имело место в протерозое, когда были соединены архейские домены. Имеющиеся к настоящему времени изотопные данные, вернее, отсутствие датированных палеоархейских пород в РТП, ИП и СПП, не позволяют говорить о существовании в палеоархее единого континента.

Детальное изучение гранулитов Среднего Побужья на примере одного образца показало чрезвычайно сложную геологическую историю формирования древнейших пород, включающую в интервале времени 3.7—3.3 млрд лет неоднократное внедрение в эндербиты основных пород и несколько этапов гранулитового метаморфизма [Лобач-Жученко и др., 2016].

О значительном распространении древнейших пород на территории Сарматии свидетельствует большое количество датированного эоархейского и палеоархейского детритового циркона [Бибикова и др., 2010, 2013], а присутствие в мезоархейских и протерозойских интрузиях ксеногенного циркона палеоархейского возраста (см. табл. 3) отражает широкое развитие древних пород на глубине. Важным моментом эволюции континентальной коры Сарматии является проявление на этапе 3.55 млрд лет в Среднем Побужье гранулитового метаморфизма; ряд образцов основных пород и гранитоидов КБ (см. табл. 1, 2) содержит циркон с возрастом 3.7—3.5 млрд лет, состав, строение и высокая температура кристаллизации которого, превышающая 750 °C, отвечают его образованию в условиях гранулитовой фации метаморфизма. Наибольшая эндогенная активность имела место в первой половине палеоархея.

В мезоархее, на этапе 3.2—3.0 млрд лет, большая часть территории Сарматии характеризовалась сходным геодинамическим режимом: имело место дробление эо- и палеоархейского фундамента и образование внутриконтинентальных рифтогенных структур с внедрением вулканитов и формирование синхронных с ними плутонических пород (см. табл. 3). Можно предполагать, что восточная часть Сарматии — Курский блок ВКМ, Приазовская и Приднепровская провинции УЩ — представляла собой единую гранит-зеленокаменную область. Не исключено, что она распространялась и на западную половину Сарматии. Это предположение поддерживается присутствием зеленокаменных ассоциаций в ДБП [Фомин и др., 1980; Балтыбаев и др., 2014; Лобач-Жученко и др., 2014], а также кристаллосланца-

ла прориц									
Провин- ция, блок	Комплекс, серия, структура	Порода	Возраст, млрд лет	Тип циркона	Источ- ник				
		Палеоархей							
	Побужений комплекс	Гиейсорилербити	3 75	Магматицеский	1 2				
	побужекий комплеке	Мафиты	3.66	Warm warm teekinn	1, 2				
УЩ, ДБП	<i>"</i>	Гранулиты	3.55	// Метаморфинеский	2				
	Лнестровско-бугская серия	Кварциты	3 75-3 65	Летритовый	3				
	Днеетровеко оргекая серия	Пироксениты	3.65	Магматический	5				
	Новопавловский комплекс	Тоналиты	3.6—3.5	»	4, 5				
УЩ, ПП		Мигматиты	3.4	Метаморфический	6				
	Сорокинская структура	Осадки	3.5—3.6	Детритовый	7				
		+ 1 <i>C</i> ×	3.66	Магматический					
	Обоянскии комплекс	Амфиболиты, плагиогнеисы	3.48	Метаморфический					
ВКМ, КБ	»	Гранитоиды	3.52—3.47	Магматический	8				
	Белогорьевский комплекс	Габбронориты	3.46	»					
	Смородинский комплекс	Габбро-долериты	3.65—3.1	Ксеногенный					
Мезоархей									
		Ортопироксениты	3.34	Магматический	9				
УЩ, ДБП	Побужский	Кристаллосланцы	~3.2	Магматический (?)					
• щ, для		(метавулканиты)	2.96	Метаморфический	10				
	Верховцевская и чертомлык-	Риолиты, дациты	3.19—3.14	Магматический	11, 12				
	15 51	»	3.08-2.95	»	12, 13				
УШ. СПП	Сурская структура	Габбро, габбронориты	3.18-3.04	»	13, 14				
,	Белозерская серия	Метаосалки	3.1-3.0 (3.2-3.3)	Летритовый	7				
		Чарнокиты	3.01	Магматический					
	Славгородский блок	Основные гранулиты	2.99	Метаморфический	14				
	Западно-приазовская серия	Амфиболиты, плагиогнейсы	3.12—3.0	Метаморфический	15				
	Новогоровская зеленокаменная	Метаандезиты	3.09	Магматический (?)	12				
УЩ, ПП	Обиточненский комплекс	Габбро, диориты	2.95—2.86	Магматический	15				
	Сорокинская, федоровская	Кварциты	3.5—3.6	Детритовый (магматический)	7				
	структуры	1	3.3	Метаморфический					
	Лебединская серия	Метариолиты	3.15	Магматический					
	Александровская серия	Амфиболиты	3.03	Метаморфический					
	Сергиевский комплекс	Серпентиниты	3.12	Магматический					
ВКМ, КБ	Салтыковский комплекс (?)	Гранодиориты	3.09-2.92	»					
	»	Метагаббро	2.91-2.89	»					
			2.92	»					
	Комплекс гранитоидов	Граниты	3.07-2.9	Унаследованный	8				
	1	Граница мезо- и неоархея							
	Белогорьевский комплекс	Габбронориты	2.82	Метаморфический					
ВКМ, КБ		Субщелочные граниты	2.82	Магматический					
	Ультраметаморфические об-	Метаморфизм железистых	2.70						
	разования	кварцитов	2.78	метаморфическии					
		Неоархей							
УЩ, ДБП	Бугская серия	Кварциты	~2.7	Детритовый	16				
УЩ, СПП	Анновский комплекс	Граниты	2.61-2.62	Магматический	12				
ВКМ. КБ	Мигматит-плагиогранитный	Граниты	2.67	Магматический	8				
21111, 110	комплекс (салтыковский)	- Parinter	3.09	Унаследованный					

Сводные геохронологические данные для комплексов пород архея Украинского щита и Воронежского массива

Таблица 3.

Примечание. 1 — [Claesson et al., 2015]; 2 — [Lobach-Zhuchenko et al., 2016]; 3 — [Бибикова и др., 2013]; 4 — [Віbіkova, Williams, 1990]; 5 — [Артеменко и др., 2006]; 6 — [Lobach-Zhuchenko et al., 2014]; 7 — [Бибикова и др., 2010]; 8 — настоящая работа; 9 — [Лобач-Жученко и др., 2013]; 10 — [Балтыбаев и др., 2014]; 11 — [Samsonov et al., 1996]; 12 — [Щербак и др., 2005]; 13 — [Samsonov et al., 1993]; 14 — [Бобров и др., 2010]; 15 — [Бибикова и др., 2008]; 16 — [Shumlyanskyy et al., 2015].

ми и амфиболитами в РТП и ИП [Щербаков, 2005]. Анализ состава базальтов и коматиитов ЗКП Сарматии свидетельствует, что вулканизм УЩ и ВКМ имел сходный глубинный источник (DEP или FOSO), а лавы являются продуктами плавления плюма [Арестова и др., 2011; Lobach-Zhuchenko et al., 2014; Рыборак, Альбеков, 2015]. Большой вклад в строение континентальной коры Сарматии внес магматизм (становление тоналит-трондьемитовых серий), синхронный и непосредственно последовавший вслед за формированием зеленокаменных ассоциаций (3.1—2.9 млрд лет).

Последние активные эндогенные события на территории Сарматии происходили в конце мезоархея — 2.85—2.8 млрд л. н. (см. табл. 3). Важным процессом этого периода является ультраметаморфизм, в результате которого в условиях амфиболитовой и гранулитовой фации за счет частичного плавления более древних (3.5—3.0 млрд лет) сиалических пород формировались ультраметаморфические гранитоиды. *PT*-параметры высокотемпературного гранулитового метаморфизма и его возраст установлены для метаморфических пород КБ и ПП УЩ ([Fonarev et al., 2006; Пилюгин, 2007; Савко и др., 2009] и настоящая работа]). Близкий возраст около 2.8 млрд лет для гранулитового метаморфизма эндербитов предполагается для Среднего Побужья [Лобач-Жученко и др., 2013; Claesson et al., 2015]. Значительное уменьшение величины Се-аномалии (см. табл. 2) в метаморфическом цирконе свидетельствует об уменьшении фугитивности кислорода при метаморфизме [Burnham, Berry, 2012]. Результаты изучения детритовых цирконов из зрелых осадков белозерской серии СПП, бугской серии ДБП [Бибикова и др., 2010, 2013; Shumlyanskyy et al., 2015] (см. табл. 3) позволяют предполагать, что к границе мезо- и неоархея территория Сарматии была эродирована и представляла собой протоплатформу, на которой формировались зрелые осадки.

Древнейшие гнейсоэндербиты по химическому составу соответствуют ТТГ формации, слагающей матрицу всех архейских кратонов. Породы Сарматии отличаются от многих из них многократной тектонометаморфической переработкой, благодаря чему породы ТТГ серии превращены в пироксеновые ортогнейсы (эндербиты). Вторичность гранулитового метаморфизма доказывается присутствием в цирконе эндербитов минеральных включений амфиболитовой фации [Степанюк, 1998]. В результате многократных деформаций и метаморфизма (в мезо- и неоархее) ДБП и ПП УЩ, КБ ВКМ превращены в гранулитогнейсовые террейны, сохраняющие реликты гранит-зеленокаменных областей. Таким образом, многократный магматизм, деформации и высокотемпературный метаморфизм существенно переработ, многозданную в палеоархее континентальную кору Сарматии.

Незначительное проявление на территории Сарматии эндогенных процессов в неоархее (2.75— 2.5 млрд лет) отличает Сарматию от другого фрагмента фундамента Восточно-Европейской платформы — Балтии, где значительная часть гранитов и мигматитов сформирована в интервале 2.70—2.75 млрд лет [Ранний докембрий..., 2005].

ОСНОВНЫЕ ВЫВОДЫ

Проведенное исследование территории ВКМ с использованием локального U-Pb метода датирования (SHRIMP-II), геохимического и минералогического изучения циркона показало сложную историю формирования исследованных пород.

Впервые для пород обоянского комплекса определены эоархейский и палеоархейский возрасты, подтвердившие его отнесение к древнейшим образованиям ВКМ. Этот вывод базируется в том числе и на обнаруженных ксеногенных и унаследованных зернах циркона, что позволило оценить возраст источника осадочных пород, разделить и датировать магматические и метаморфические процессы.

На основе возрастной корреляции архейских пород Курского блока ВКМ и Украинского щита установлено, что определяющая часть континентальной коры Сарматии сложена мезоархейскими гранитоидами, значительная часть которых представляет собой результат переработки в процессе ультраметаморфизма палеоархейских пород (см. табл. 3).

Совокупный анализ данных указывает, что в мезоархее восточная часть Сарматии развивалась в едином геодинамическом режиме. На границе мезо- и неоархея большая часть Сарматии представляла собой протоплатформу с образованием зрелых осадков.

Тектоническая активность и высокотемпературный метаморфизм в конце архея и в палеопротерозое на территории ВКМ и УЩ привели к превращению большей части Сарматии в гранулитогнейсовые области.

Полученные в настоящей работе данные о пространственно-временном положении пород в мезоархее и поставленные вопросы об их распространении в палеоархее будут способствовать созданию модели тектонической эволюции Сарматии в архее.

Работа выполнена по программе ИГГД РАН № 0153-2015-0006 при поддержке Минобрнауки России в рамках базовой и проектной части государственного задания в сфере научной деятельности №5.9248.2017/ВУ на 2017-2019 гг. и СПбГУ №3.37.86.2011.

ЛИТЕРАТУРА

Альбеков А.Ю., Рыборак М.В., Бойко П.С. Реперное U-Pb изотопное датирование палеопротерозойских габброидных формаций Курского блока Сарматии (Воронежский кристаллический массив) // Вестн. ВГУ, 2012, № 2, с. 84—94.

Арестова Н.А., Лобач-Жученко С.Б., Салтыкова Т.Е. Раннедокембрийский мафит-ультрамафитовый магматизм Сарматии (временные и пространственные закономерности) // Материалы III Российской конференции по проблемам геологии и геодинамики докембрия. СПб., ИГГД РАН, 2011, с. 15—18.

Артеменко Г.В., Швайка И.А., Татаринова Е.А. Палеоархейский возраст ультраметаморфических плагиогранитоидов Курско-Бесединского блока (Воронежский кристаллический массив) // Геологический журнал, 2006, № 1, с. 84—87.

Балтыбаев Ш.К., Лобач-Жученко С.Б., Балаганский В.В., Юрченко А.В., Егорова Ю.С., Богомолов Е.С. Возраст и метаморфизм кристаллосланцев побужского гранулитового комплекса Украинского щита — древнейших вулканитов фундамента Восточно-Европейской платформы // Региональная геология и металлогения, 2014, № 58, с. 33—44.

Бибикова Е.В., Лобач-Жученко С.Б., Артеменко Г.В., Клаэссон С., Коваленко А.В., Крылов И.Н. Позднеархейские магматические комплексы Приазовского террейна Украинского щита: геологическое положение, изотопный возраст, источники вещества // Петрология, 2008, т. 16, № 3, с. 227—247.

Бибикова Е.В., Клаэссон С., Федотова А.А., Артеменко Г.В., Ильинский Л.С. Терригенный циркон архейских зеленокаменных поясов — источник информации о ранней коре Земли: Приазовье и Приднепровье, Украинский щит // Геохимия, 2010, № 9, с. 899—916.

Бибикова Е.В., Клаэссон С., Федотова А.А., Степанюк Л.М., Шумлянский Л.С., Кирнозова Т.И., Фугзан М.М., Ильинский Л.С. Изотопно-геохронологическое (U-Th-Pb, Lu-Hf) изучение цирконов архейских магматических и метаосадочных пород Подольского домена Украинского щита // Геохимия, 2013, № 2, с. 99—121.

Бобров А.Б. Метаморфизованная риодацитовая формация зеленокаменных поясов Украинского щита // Геологический журнал, 1993, № 5, с. 53—59.

Бобров А.Б., Степанюк Л.М., Лысак А.М., Лысенко А.А. Славгородский гранулитовый комплекс // Гранулитовые структурно-формационные комплексы Украинского щита — европейский эталон. Путеводитель геологических экскурсий / Ред. В.А. Михайлов. Львов, ЗУКЦ, 2010, с. 64—78.

Боброва Е.М. Геология, вещественный состав и условия образования ультрамафит-мафитовых пород Льговско-Ракитнянского зеленокаменного пояса КМА: Автореф. дис. ... к. г.-м. н. СПб., ВСЕГЕИ, 2013, 24 с.

Бочаров В.Л., Фролов С.М., Плаксенко А.Н., Левин В.Н. Ультрамафит-мафитовый магматизм гранит-зеленокаменной области КМА. Воронеж, Изд-во ВГУ, 1993.

Зеленокаменные пояса фундамента Восточно-Европейской платформы (геология и петрология вулканитов) / Ред. С.Б. Лобач-Жученко. Л., Наука, 1988, 212 с.

Колий В.Д., Сиворонов А.А., Бобров А.Б., Некряч А.И. Стратиграфия нижнего докембрия Среднеприднепровского геоблока Украинского щита // Геологический журнал, 1991, № 4, с. 28—39.

Крестин Е.М. Докембрий КМА и основные закономерности его развития // Изв. вузов. Геология и разведка, 1980, № 3, с. 3—18.

Лобач-Жученко С.Б., Балаганский В.В., Балтыбаев Ш.К., Степанюк Л.М., Пономаренко А.Н., Лохов К.И., Корешкова М.Ю., Юрченко А.В., Егорова Ю.С., Сукач В.В., Бережная Н.Г., Богомолов Е.С. Этапы формирования побужского гранулитового комплекса: новые структурно-петрологические и изотопно-геохронологические данные (Среднее Побужье, Украинский щит) // Минералогический журнал, 2013, т. 35, № 4, с. 88—98.

Лобач-Жученко С.Б., Арестова Н.А., Вревский А.Б., Егорова Ю.С., Балтыбаев Ш.К., Балаганский В.В., Богомолов Е.С., Степанюк Л.М., Юрченко А.В. Происхождение кристаллосланцев побужского гранулитового комплекса Украинского щита // Региональная геология и металлогения, 2014, № 59, с. 15—27.

Лобач-Жученко С.Б., Каулина Т.В., Лохов К.И., Егорова Ю.С., Скублов С.Г., Галанкина О.Л., Антонов А.В. Изотопно-геохимические особенности циркона и его значение для реконструкции геологической истории раннеархейских гранулитов Украинского щита // ЗРМО, 2016, № 4, с. 1—19.

Лохов К.И., Капитонов И.Н., Прасолов Э.М., Сергеев С.А. Экстремально радиогенный гафний в цирконах из докембрийских кальцифиров // ДАН, 2009а, т. 425, № 5, с. 660—663.

Лохов К.И., Салтыкова Т.Е., Капитонов И.Н., Богомолов Е.С., Шевченко С.С., Сергеев С.А. Корректная интерпретация U-Pb возраста по цирконам на основе изотопной геохимии гафния и неодима (на примере некоторых магматических комплексов фундамента Восточно-Европейской платформы) // Региональная геология и металлогения, 2009б, № 38, с. 62—72.

Лысак А.М., Пащенко И.Г. Тектоническая карта Среднеприднепровской гранит-зеленокаменной области Украинского щита // Вісник Львів. ун-ту, сер. геол., 2002, в. 16, с. 53—62.

Лысак А.М., Пащенко В.Г., Стрекозов С.М., Бородыня В.В. Основні риси докембрійської тектонічної структури Приазовської грануліт-зеленокамяної області Українського щита // Геодинаміка, 2004, № 1(4), с. 32—39.

Ненахов В.М., Стрик Ю.Н., Трегуб А.И., Холин В.М., Шабалин М.И. Минерагенические исследования территорий с двухъярусным строением (на примере Воронежского кристаллического массива). М., ГЕОКАРТ, ГЕОС, 2007, 284 с.

Пилюгин С.М. Высокотемпературный метаморфизм гранулитовых комплексов Сарматии: Автореф. дис.... к. г.-м. н. М., 2007, 22 с.

Ранний докембрий Балтийского щита / Ред. В.А. Глебовицкий. СПб., Наука, 2005, 711 с.

Рыборак М.В. Архейская акротема // Государственная геологическая карта Российской Федерации м-ба 1:100 000 (третье поколение). Сер. Центрально-Европейская. Лист N-36, (М-36) — Смоленск. Объяснительная записка. СПб., 2011, с. 7—13.

Рыборак М.В., Альбеков А.Ю. Петрогенезис коматиит-толеитовой ассоциации позднеархейских зеленокаменных поясов Курского блока Сарматии // Вестн. ВГУ, 2015, вып. 1, с. 53—60.

Савко К.А., Самсонов А.В., Пилюгин С.М., Сальникова Е.Б., Артеменко Г.В. Новые данные о возрасте гранулитового метаморфизма Курско-Бесединского блока Воронежского кристаллического массива // Вестн. ВГУ, 2009, № 1, с. 84—93.

Салтыкова Т.Е., Лохов К.И. Основные результаты работ по изотопно-геохимическому и геохронологическому обеспечению Госгеолкарты-1000/3 // Региональная геология и металлогения, 2007, № 33, с. 89—93.

Самсонов А.В., Пухтель И.С., Журавлев Д.З., Чернышев И.В. Геохронология архейского Аульского гнейсового комплекса и проблема фундамента зеленокаменных поясов Украинского щита // Петрология, 1993, т. 1, № 1, с. 29—49.

Сиворонов А.А., Сирота М.Г., Бобров А.Б. Тектоническое строение Среднеприднепровской зеленокаменной области // Геологический журнал, 1983, т. 43, № 6, с. 52—64.

Степанюк Л.М. Хронология формирования гранулитовых комплексов Верхнего Побужья, по данным цирконометрии // Минералогический журнал, 1997, т. 19, № 6, с. 71—76.

Сукач В.В. Мезоархейские зеленокаменные структуры Среднего Приднепровья Украинского щита: стратиграфические разрезы, их вещественный состав и возрастная корреляция // Минералогический журнал, 2014, т. 36, № 2, с. 77—91.

Таусон Л.В. Геохимические типы и потенциальная рудоносность гранитоидов. М., Наука, 1977, 280 с.

Усенко И.С. Основные и ультраосновные породы Западного Приазовья. Киев, Изд-во АН УССР, 1960, 143 с.

Федотова А.А., Бибикова Е.В., Симакин С.Г. Геохимия циркона (данные ионного микрозонда) как индикатор генезиса минерала при геохронологических исследованиях // Геохимия, 2008, № 9, с. 1–18.

Фомин О.Б., Егоров О.С., Когут К.В. О коматиитах Украинского щита // Докл. АН УССР, сер. Б, 1980, № 2, с. 33—37.

Чернышов Н.М., Ненахов В.М., Лебедев И.П. Модель геодинамического развития Воронежского кристаллического массива в раннем докембрии // Геотектоника, 1997, № 3, с. 21—30.

Чернышов Н.М., Альбеков А.Ю., Рыборак М.В. О современном состоянии схемы стратиграфии и магматизма раннего докембрия Воронежского кристаллического массива // Вестн. ВГУ, 2009, № 2, с. 33—40.

Щербак Н.П., Пономаренко А.Н. Возрастная последовательность процессов вулканизма и гранитоидного магматизма Украинского щита // Минералогический журнал, 2000, т. 22, № 2/3, с. 12—24.

Щербак Н.П., Артеменко Г.В., Лесная И.М., Пономаренко А.Н. Геохронология раннего докембрия Украинского щита. Архей. Киев, Наук. думка, 2005, 241 с.

Щербаков И.Б. Петрология Украинского щита. Львов, ЗУКЦ, 2005, 366 с.

Belousova E.A., Griffin W.L., O'Reilly S.Y., Fisher N.I. Igneous zircon: trace element composition as an indicator of source rock type // Contr. Miner. Petrol., 2002, v. 143, p. 602–622.

Bibikova E.V., Williams I.S. Ion microprobe U-Th-Pb isotopic studies of zircons from three Early Precambrian areas in the USSR // Precambrian Res., 1990, v. 48, p. 203—221.

Black L.P., Kamo S.L., Allen C.M., Aleinikoff J.N., Davis D.W., Korsch R.J., Foudoulis C. TEMO-RA 1: a new zircon standard for Phanerozoic U–Pb geochronology // Chem. Geol. 2003, v. 200, p. 155—170. **Bogdanova S.** Segments of the East European craton // Europrobe Symposium. Publ. of the Institute of Geophysics. Polish Academy of Science, 1991, A-20, p. 33—38.

Burnham A.D., Berry A.J. On experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity // Geochim. Cosmochim. Acta, 2012, v. 95, p. 196–212.

Claesson S., Bibikova E., Shumlanskyy L., Dhuiml B., Hawkesworth C.J. The oldest crust in the Ukrainian Shield — Eoarchaean U-Pb and Hf-Nd constrains from enderbites and metasediments // J. Geol. Soc. London, Spec. Publ., 2015, v. 389, p. 227—253.

Fonarev V.I., Pilugin S.M., Savko K.A., Novikova M.A. Exolution textures of ortho- and clinopyroxene in high-grade BIF of the Voronezh Crystalline Massif: evidence of ultra-high-temperature metamorphism // J. Metamorph. Geol., 2006, v. 24, p. 135—151.

Hinton R.W., Upton B.G.J. The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths // Geochim. Cosmochim. Acta, 1991, v. 55, p. 3287—3302.

Hoskin P.W.O., Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis // Rev. Mineral. Geochem., 2003, v. 53, p. 27–62.

Lobach-Zhuchenko S.B., Balagansky V.V., Baltybaev Sh. K., Bibikova E.V., Chekulaev V.P., Yurchenko A.V., Arestova N.A., Artmenko G.V., Egorova Ju.S., Bogomolov E.S., Sergeev S.A., Skublov S.G., Presnyakov S.L. The Orekhov–Pavlograd Zone, Ukrainian Shield: Milestones of its evolutionary history and constraints for tectonic models // Precambrian Res., 2014, v. 252, p. 71–87.

Lobach-Zhuchenko S.B., Kaulina T.V., Baltybaev S.K., Balagansky V.V., Egorova Yu.S., Lokhov K.I., Skublov S.G., Sukach V.V., Bogomolov E.S., Stepanyuk L.M., Galankina O.L., Berezhnaya N.G., Kapitonov I.N., Antonov A.V., Sergeev S.A. The long (3.7-2.1 Ga) and multistage evolution of the Bug Granulite-Gneiss Complex, Ukrainian Shield, based on the SIMS U-Pb ages and geochemistry of zircons from a single sample // Crust–mantle interactions and granitoid diversification: Insights from Archaean Cratons) / Eds. J. Halla, M.J. Whitehouse, T. Ahmad, Z. Bagai. Geol. Soc. London, Spec. Publ., 2016, v. 449. http://doi. org/10.1144/SP449.3

McDonough W.F., Sun S. The composition of the Earth // Chem. Geol., 1995, v. 120, p. 223-253.

Pelletter E., Cheilletz A., Gasquet D., Mouttaqi A., Annich M., El Hakour A., Deloule E., Féraud G. Hydrothermal zircons: a tool for ion microprobe U-Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit — Morocco) // Chem. Geol., 2007, v. 245, p. 135—161.

Rayner N., Stern R.A., Carr D. Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada // Contr. Miner. Petrol., 2005, v. 148, p. 721–734.

Salters V.J.M., White W.M. Hf isotope constrains on mantle evolution // Chem. Geol., 1998, v. 145, p. 447-460.

Samsonov A.V., Zhuravlev D.Z., Bibikova E.V. Geochronology and petrogenesis of an Archaean acid volcano-plutonic suite of the Verchovtsevo greenstone belt, Ukrainian Shield // Int. Geol. Rev., 1993, v. 35, p. 1166—1181.

Samsonov A.V., Chernyshev I.V., Nutmam A.P., Compston W. Evolution of the Archaean Aulian gneiss complex, Middle Dnieper gneiss-greenstone terrain, Ukrainian Shield: SHRIMP U-Pb zircon evidence // Precambrian Res., 1996, v. 78, p. 65–78.

Schuth S., Gornyy V.I., Berndt J., Shevchenko S.S., Sergeev S.A., Karpuzov A.F., Mansfeldt T. Early Proterozoic U–Pb zircon ages from basement gneiss at the Solovetsky Archipelago, White Sea, Russia // Int. J. Geosci., 2012, v. 3, p. 289—296.

Shumlyanskyy L., Hawkesworth C., Dhuime B., Billström B., Claesson S., Storey C. ²⁰⁷Pb/²⁰⁶Pb ages and Hf isotope composition of zircons from sedimentary rocks of the Ukrainian shield: Crustal growth of the south-western part of East European craton from Archaean to Neoproterozoic // Precambrian Res., 2015, v. 260, p. 39—54.

Vavra G., Schmid R., Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps) // Contr. Miner. Petrol., 1999, v. 134, p. 380—404.

Vervoort J.D., Blichert-Toft J. Evolution of the depleted mantle: Hf evidence from juvenile rocks through time // Geochim. Cosmochim. Acta, 1999, v. 63, p. 533—556.

Williams I.S. U-Th-Pb geochronology by ion microprobe // Eds. M.A. McKibben, W.C. Shanks, W.I. Ridley. Applications of microanalytical techniques to understanding mineralizing processes // Rev. Econ. Geol., 1998, v. 7, p. 1–35.

Рекомендована к печати 30 марта 2017 г. Н.Л. Добрецовым

Поступила в редакцию 1 июля 2016 г., после доработки — 13 декабря 2016 г.