Dating of zircon from diamond placers and tuffaceous-sedimentary rocks and xenoliths
therein (Grakhanov and Smelov, 2011; Grakhanov et al., 2015b)

therein (Oran	manov ana pinciov, 20	11, Orakilanov et al	., 20150)					
Placers and sites	Number of analyses/variations in dating, Ma, average							
	concordant value, Ma (index)							
	Jurassic	Triassic	Paleozoic-Vendian					
Q	uaternary commercial c	liamond placers						
Ebelyakh	7/147-177, 149 (J ₃)	3/222-239, 226, (T ₃)						
Diamond-bearing co	onglomerates of the Plie	ensbachian Stage (Lov	ver Jurassic)					
Kuoika R., Byuk-Yuryage		8/225 (T ₃)						
Creek								
Raetian	and Norian diamond-b	earing conglomerates						
Cape Tumul, Tuor-Khaya,		7/221-242, 225	3/257-263, 260 (P ₃)					
1003-1059		(T ₃)						
Highly diamondiferous	tuffaceous-sedimentary	y rocks (bottom of the	Carnian Stage)					
Bulkur, 165 (BG1), 2011*)		5/230-245, 241,5	8/263-279, 266 (P ₂)					
		(T_2)	1/316 (C ₂)					
			1/461 (O ₂)					
Bulkur, BG1-5, 2015*)		20/244 (T ₂)						
Bulkur, PG2-2010		34/244 (T ₂)						
Khatystaakh, 5014		8/239-256, 239	1/276 (P ₁)					
		(T_2)						
Ulakhan-Aldzharkhai,		8/220-231, 229, 2						
5010		(T ₃)						
Cape Tumul, 1000		6/236-247, 242, 4	2/268 (P ₂)					
		(T_2)	1/341 (C ₁)					
Taas-Krest-Yuryage		5/230-240, 236	10/244-259, 251					
Creek**)		(T_2)	(\mathbf{P}_3)					
			1/293 (P ₁)					
			623 (V ₁)					
			2/1764-1837, 1800					
			(\mathbf{PR}_1)					
Pebbles (xenoliths) from tuffs of the Bulk	ur anticline at point P	G2 (Fig.1)					
Bulkur, PG2-2010,		8/244 (T ₂)						
rhyolite-dacites								
Bulkur, PG2-2010, not		8/246 (T ₂)						
determined								
Bulkur, PG2-2010,		6/250 (T ₁)						
andesite-basalts								

Note. Zircon U–Pb dating was carried out using a SHRIMP II ion microprobe at A.P. Karpinsky Russian Geological Research Institute (VSEGEI) (St. Petersburg) by analysts E.N. Lepekhina and A.N. Larionov.

*) Kimberlite zircon was sampled from the same point, but dated at different times.

**) Unpublished data by VSEGEI (Gosgeolkarta-1000/3, Sheets S-51, 52).

Site, sample number, number in Fig. 1	Content		Color, %		Mechanical wear, %		
	in 20-L stream sediment sample	orange	red	red-violet	I–II	corrosion	
Bulkur, PG2/1, 3	23.702	55.6	17.6	26.4	66.1	33.9	
Bulkur, BG1/2, 4	23.155	48.4	30.8	20.8	55.5	44.5	
Khatystaakh, 5013, 10	11.498	55.9	29.2	14.9	90.2	9.8	
UlAldzh., 5004, 9	11.498	72.6	0.0	27.4	62.0	38.0	

Typomorphic features of pyrope from Carnian sedimentary-tuffaceous rocks

Content of chromian pyropes and grains of the diamond association in Carnian

Site, point number, number of studied grains	value	$Cr_2O_3 > 5$	$Cr_2O_3 > 7$	$Cr_2O_3 > 10$	$Cr_2O_3 < 2$	Diamond association
Bulkur R., PG2/1, $n =$	number	86	31	4	208	7
523	%	16.44	5.93	0.76	39.77	1.34
Bulkur R., 5029, <i>n</i> =	number	79	22	0	45	1
286	%	27.53	7.67	0.00	15.68	0.35
Bulkur R., 5020, <i>n</i> =	number	71	12	0	64	3
289	%	24.57	4.15	0.00	22.15	1.04
Khatystaakh R., 5013, n	number	45	9	1	57	0
= 289	%	15.57	3.11	0.35	19.72	0.00
Taas-Ary Isle, 5028, n	number	84	15	0	53	2
= 285	%	29.47	5.26	0.00	18.60	0.70
Ulakhan-Aldzharkhai	number	71	10	1	44	4
R., 5002, <i>n</i> = 296	%	23.99	3.38	0.34	14.86	1.35
Ushat-Khaya R., 5008,	number	24	1	0	67	0
n = 285	%	8.42	0.35	0.00	23.51	0.00
Cape Ulakhan-Krest,	number	67	18	1	100	5
1018, <i>n</i> = 244	%	27.46%	7.38%	0.41%	40.98%	2.05%
Cape Tumul, 1000,	number	113	26	0	14	4
n = 244	%	38.44%	8.84%	0.00%	4.76%	1.36%

volcanosedimentary rocks

Content of kimberlite indicator minerals in Yakutian primary deposits and Carnian
tuffaceous-sedimentary rocks

	Avera	Pyr/nicr				
		0				
Pipes, rocks			including		relation	
	Total	pyrope	picroilmen ite	Cr-spinel	ship	
1	2	3	4	5	6	
Carni	ian tuffs an	d tuffaceous-s	edimentary ro	ocks		
Bulkur, BG1, total:	9.42	9.11	0.01	0.30	911	
including $-1 + 0.5$	16.26	15.91	0.02	0.33	795.5	
-0.5 + 0.25	4.17	3.88	0.005	0.28	776	
Bulkur, PG2-2010,						
total:	33.19	29.32	1.17	2.70	25.1	
including $-1 + 0.5$	52.08	48.80	1.42	1.86	34.4	
-0.5 + 0.25	21.19	16.94	1.01	3.24	16.8	
Khatystaakh, 5013-						
2010, total:	1.90	1.87	0.003	0.03	623.3	
including $-1 + 0.5$	3.33	3.31	0.003	0.02	1103.3	
-0.5 + 0.25	0.77	0.73	0.002	0.04	365	
Ulakhan-Aldzharkhai,						
5007, total:	1.03	1.03	—	—	1.0	
including $-1 + 0.5$	1.49	1.49	—	—	1.5	
-0.5 + 0.25	0.79	0.79	—	—	0.8	
Pronchishchev Ridge,						
PP3, total:	2.60	2.18	0.03	0.39	72.7	
including $-1 + 0.5$	2.98	2.97	0.003	0.01	990	
-0.5 + 0.25	2.21	1.35	0.06	0.80	22.5	
Tumul, 1000, total:	1.39	0.37	0.81	0.21	0.5	
including $-1 + 0.5$	1.72	0.46	1.15	0.11	0.4	
-0.5 + 0.25	0.69	0.18	0.09	0.42	2	
Yakutia	an primary	diamond depos	sits (Antipin,	1998)		
Mir	1.91	0.67	1.21	0.03	0.55	
Internatsional'naya	0.31	0.28	0.01	0.02	28.0	
Aikhal	0.02	0.01	0.00.	0.006	3.00	
Yubileinaya	0.15	0.1	0.05		2.0	
Udachnaya	0.37	0.04	0.28	0.001		
Sytykanskaya	1.80	0.15	1.65	р.з.	0.09	

Grain-size composition of diamonds from tuffaceous-sedimentary rocks of the Angardam-

	Sample	ed in	Averag	ag Including grain-size classes, %							
Sampling site, section in Fig. 1	total		e weight	-8+4		-4 + 2		-2 + 1		-1 + 0.5	
	pcs.	mg	mg	pcs.	mg	pcs.	mg	pcs.	mg	pcs.	mg
Kengdei Member											
Ol'khovyi Creek, 1	146	793.2	5.4	0	0	8	208.0	76	519.2	62	66.0
Bulkur Member											
Pronchishchev Ridge Urasaalakh R., 7	117	122.0	1.0	0	0	0	0	14.5	34.4	85.5	65.6
Cape Tumul, 6	85	4100. 0	48.2	3.5	13.5	81.3	86.1	7.0	0.3	8.2	0.1
Bulkur R., BG1, 4	285*)	3155. 4	11.1	0	0	36.1	65.9	51.9	33.0	12.0	1.1
Bulkur R., PG2, 3**)	428	6535. 1	15.3	0.2	2.6	43.7	82.5	42.5	14.2	13.6	0.7
Khatystaakh R., 10	125	966.0	7.7	0.8	15.5	20.7	56.4	39.7	26.2	38.8	1.9
Ulakhan-Aldzharkhai R., 9	174	1476. 0	8.48	0.6	9.8	20.7	58.3	36.8	28.3	41.9	3.6

Tasa complex (data from Nizhne-Lenskoe OJSC)

*) Fragments excluded.

**) A 5.16-ct crystal of variety V was found at this point by geologists of Aerogeologiya Scientific-Production Association.

Typomorphic features of diamonds from placers and kimberlites of the Siberian Arctic

Diamond varieties, according to Yu.L. Orlov (1984), %										
			Ι						V +	
		ro	ounded				IV	IV VII		
Kimberlite pipes and placers	lamina	Urala	voin	Sum	sum	11	111	1 V	Ebelya	VIII
Trinice pipes and piacers	r	type	type	Sum					kh	
		71	51						type	
Kimberlites of the northe	rn Siber	ian diar	nond-b	earing	; provin	ce (Zi	nchuk a	ind Kop	otil', 200	3)
D'yanga, T ₂₋₃ *)	20.6	0.3	53.8	54.1	93.9	3.3	0.0	2.5	0.0	0.0
Leningrad, PZ ₂₋₃ *)	57.6	6.3	18.7	25.0	95.5	0.0	0.0	0.0	0.0	4.5
Malokuonapskaya, T ₂₋₃ *)	64.0	4.8	9.6	14.4	97.6	2.0	0.0	0.0	0.0	0.4
Upper Paleozoid	e, Nuch	chayure	ge For	mation	(Zinch	uk an	d Kopti	l', 2003)	
Kyutyungde R., C ₁ *)	75.9	6.9	4.3	11.2	88.2	0.5	0.0	9.7	0.0	0.0
Triassic pl	acers of	f the Lac	dinian (Stage	of the K	Lengde	ei Meml	ber		
Western Upper Yana region,	56	63.0	63	69 3	77 2	24	0.0	0.0	20.5	0.0
Ol'khovyi, T ₃ ^{kn} **)	5.0	05.0	0.5	07.5	11.2	2.7	0.0	0.0	20.5	0.0
Triassic placers of the Carnian Stage of the Bulkur Member										
Cape Tumul, T ₃ ^{os} **)	17.9	35.9	7.7	43.6	62.8	1.3	0.0	2.6	33.3	0.0
Bulkur R., BG1, T ₃ ^{os} **)	19.2	41.6	7.9	49.5	70.6	3.3	0.0	0.5	22.9	0.0
Bulkur R., PG2, T_3^{os**})	19.7	49.1	4.8	53.9	75.1	2.3	0.0	2.0	22.5	0.0
Khatystaakh R., T ₃ ^{os} **)	21.6	49.9	7.6	57.5	79.1	1.3	0.8	1.3	18.8	0.0
Ulakhan-Aldzharkhai R., T3 ^{05**})	11.2	58.2	8.9	67.1	80.7	2.3	0.0	0.0	19.2	0.0
Pronchishchev Ridge, T ₃ ^{os*})	18.2	25.4	27.0	52.4	85.7	1.6	0.0	0.0	9.5	0.0
Triassic placers of the R	aetian S	tage of	the Bu	lunkar	Forma	tion (Grakhaı	nov et a	l., 2010a)
Watershed of the Nikabyt	22.4	24.7	8.2	48.4	72.3	6.3	0.0	2.3	19.1	0.0
Early Juragia n	0.0000000	f tha Ch	umoro	Forme	tion (C	rokho	nov et e	1 2013	2)	
Linner reaches of the Kusika			ymara I	гоппа		nakna	nov et a	II., 2013	5)	
River, J_1 cm, **)	21.1	50.0	7.9	57.9	86.9	2.6	0.0	0.0	10.5	0.0
Late Jurassic plac	ers of tl	ne Chon	oko Fo	ormatio	on (Zino	chuk a	nd Kop	til', 200)3)	
Interfluve of the Lena,										
Molodo, and Syungyude	27.2	20.4	11.4	31.8	81.2	2.3	0.0	2.3	13.6	0.0
Rivers, J ₃ cn, *)										
Cretaceous placers (Grakhanov et al., 2007)										
Sinkholes in the Ebelyakh	19.1	15.6	12.0	27.6	58.2	2.8	0.7	0.7	35.5	2.1
River basin, K ₁ , *)										
Neogene placers of the Ebelyakh Formation (Grakhanov et al., 2007)										
Karst basin in the upper	21.2	10.0	15.7	25.7	55.5	2.2	0.2	0.0	41.6	0.5
reaches of the Billyakh										
River, N2 ^{eb} *)										
Quaterr	nary cor	nmercia	l place	rs (Gr	akhano	v et al	, 2007)			
Ebelyakh River placer, *)	14.1	16.2	20.3	36.5	62.9	3.6	0.2	0.5	30.9	0.2

Note. Analysts: *) V.I. Koptil', Amakinskaya Exploration Expedition, Yakutsk Territorial Geological Survey. **) B.S. Pomazanskii, A.N. Lipashova, and I.N. Bogush, ALROSA PJSC Scientific Research and Geological Exploration Enterprise.

Isotopic and trace-element composition of diamonds from tuffaceous-sedimentary rocks of the Bulkur anticline (Grakhanov et al., 2015)

Site, point of	Morphologic varieties, according to Yu.L. Orlov	Number	δ ¹³ C	Nitrogen concentration		
observation, section in Fig. 1	(1984)	isotope analysis	%o	A + B1 (ppm)	%B1	
	I, isotopically heavy					
Bulkur, BG1, 4	thin-layered laminar rhombic dodecahedron	17	-3.6	103.9	25	
Bulkur, BG1, 4	laminar octahedron of transitional shape	16	-4.8	110.7	22	
Bulkur, PG2, 3	pseudohemimorphic, transitional shape	27	-4.9	51.6	12	
Bulkur, BG1, 4	rounded dodecahedroid	9	-5.1	375.1	35	
Bulkur, BG1, 4	cubic rhombic dodecahedroid	18	-5.6	1009.1	17	
Bulkur, BG1, 4	rounded rhombic dodecahedron with shagreen and SPD	4	-6.2	795.5	25	
Bulkur, BG1, 4	rounded rhombic dodecahedron with shagreen and SPD	3	-6.9	747	50	
Bulkur, BG1, 4	rounded rhombic dodecahedron with cryptic layering	12	-7.1	932	14	
Khatystaakh, KhG5013, 10	rounded dodecahedroid	31	-7	117.3	39	
	I, isotopically light					
Bulkur, BG1, 4	rounded rhombic dodecahedron with cryptic layering	13	-17.8	1299.8	25	
Bulkur, PG2, 3	rounded rhombic dodecahedron with cryptic layering	22	-18.4	1507.9	33	
Bulkur, PG2, 3	rounded rhombic dodecahedron with shagreen and SPD	28	-19.3	293.5	29	
Bulkur, BG1, 4	rounded rhombic dodecahedron with cryptic layering	1	-19.5	1093	63	
Bulkur, PG2, 3	rounded rhombic dodecahedron with cryptic layering	20	-19.8	1977.3	70	
Bulkur, PG2, 3	rounded dodecahedroid	21	-21.3	1316.9	85	
Bulkur, BG1, 4	rounded rhombic dodecahedron with cryptic layering	11	-21.9	1955.4	80	
Bulkur, BG1, 4	rounded rhombic dodecahedron with cryptic layering	5	-22.2	831.1	27	
Bulkur, PG2, 3	dodecahedroid fragment	19	-22.2	1214.7	21	
Bulkur, PG2, 3	rounded rhombic dodecahedron with cryptic layering	23	-22.8	1279.3	29	
	II, isotopically heavy and transitio	nal				
Bulkur, PG2, 3	tetrahexahedroid	25	-7.2	551.7	42	
Bulkur, PG2, 3	cuboid fragment	26	-7.5	267.3	10	
Bulkur, PG2, 3	cube	29	-8.8	293.1	14	
Bulkur, BG1, 4	tetrahexahedroid	14	-10.1	238.8	36	
	V and VII, isotopically light					
Bulkur, BG1, 4	V, rounded dodecahedroid	6	-17.2	900.8	25	
Bulkur, BG1, 4	V, rhombic dodecahedron	10	-19.2	1728.2	22	
Bulkur, BG1, 4	V, rounded dodecahedroid	7	-19.5	873.8	26	
Bulkur, PG2, 3	V, rounded dodecahedroid of distorted shape	24	-20.4	940.3	17	
Bulkur, BG1, 4	V, rounded dodecahedroid	8	-20.5	1590.8	30	
Bulkur, BG1, 4	V, rhombic dodecahedron	15	-20.8	1716.4	31	
Bulkur, BG1, 4	VII, dodecahedroid	2	-21.2	1838.2	30	

Ulakhan-					
Aldzharkhai,	V, rounded dodecahedroid	30	-21.6	643	26
UAG5002, 9					

Note. SPD, Signs of plastic deformation.

Infrared spectra were analyzed at the Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences (Yakutsk), analyst A.E. Molotkov.

Carbon isotope composition was determined at V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences (Novosibirsk), analyst V.N. Reutskii.