Component		Surfac	ce facies of l		Structur	al KV	Siderite carbonatites	
	1	2	3	4	5	6	7	8
SiO ₂	0.56	0.53	0.31	0.16	0.42	0.48	1.04	0.66
Al_2O_3	1.95	1.70	2.51	0.47	0.40	0.33	0.46	1.17
Fe ₂ O _{3tot}	77.63	80.87	74.23	85.59	57.76	82.40	82.22	52.46
MgO			0.01	0.01		0.01	0.01	3.04
CaO			0.01	0.01		0.01	0.01	0.22
Na ₂ O	0.02		0.02	0.01	0.01	0.01	0.01	0.01
K ₂ O	0.01		0.01		0.02	0.03	0.01	0.06
TiO ₂	5.52	1.08	6.63	4.99	0.45	2.69	0.91	0.18
P_2O_5	0.44	0.58	1.72	0.34	0.16	0.22	0.39	1.30
MnO	0.04	0.00	0.10	0.27	26.65	0.90	0.32	7.72
LOI	10.10	9.93	10.33	5.30	8.72	9.15	10.96	
CO_2								24.38
BaO	0.04	0.04	0.09	0.06	3.23	0.23	0.11	4.28
Nb ₂ O ₅	1.59	0.89	1.76	0.99	0.22	1.97	1.34	0.15
La_2O_3	0.04	0.07	0.15	0.03	0.02	0.10	0.12	0.07
Ce ₂ O ₃	0.15	0.19	0.35	0.26	0.74	0.48	1.16	0.86
Total	98.07	95.90	98.24	98.46	98.80	98.99	99.07	96.48

 Table 1. Chemical composition of surface facies, structural weathering crusts and sideritic carbonatites of the Seis

 Lagos deposit (wt.%) (Giovannini et al., 2013)

Note. 1–5 – surface facies: 1 – pisolith crusts (average of 2 analyses), 2 – fragmental crusts (average of 3 analyses), 3 – spotted crusts (average of 3 analyses), 4 – oolitic crusts (average of 4 analyses), 5 – manganese crusts (average of 5 analyses); 6, 7 – structural crusts: 6 – red ochres (average of 2 analyses), 7 – brown ochres (average of 5 analyses); 8 – sideritic carbonatites (average of 4 analyses). *Here and below*: dash – not detected, empty cell – not determined.

Table 2. Chemical composition of lateritic ochres (analysis 1) and products of their epigenetic transformation: zone of ochre bleaching, rich ores (analysis 2); limonite-siderite rocks (analysis 3) (Tomtor, wt.%)

Component	1	2	3
SiO ₂	3.82	8.70	3.92
TiO ₂	1.42	7.30	1.40
Al ₂ O ₃	1.66	15.25	2.55
Fe ₂ O ₃	49.72	9.01	30.63
FeO	5.46	5.90	19.72
MnO	4.64	0.61	4.30
MgO	0.72	0.25	0.80
CaO	5.93	3.04	5.36

K_2O	0.05	0.31	0.12
Na ₂ O	0.17	0.20	0.14
P_2O_5	6.24	13.90	4.85
SO_3	0.25	0.63	0.28
CO_2	5.16	2.70	13.71
Nb ₂ O ₅	1.54	4.70	1.22
TR_2O_3	4.50	10.72	
Total	91.28	83.22	88.99

Table 3. Results of microanalysis of the manganese-rich (hollandite) (analyses 9, 13) and iron-rich (goethite) (analysis 14) phases in liquid separation structures (Chuktukon,wt.%)

L	iquid Separation str	uctures						
Mn- and Fe-phases in brown ironstone								
,	3 <i>a</i> *	3 <i>c</i>						
13	14	9						
		< 0.05						
12.64	0.19	13.10						
		0.19						
0.20								
0.27	0.26							
		0.13						
4.93	78.04	0.12						
82.63	3.39	86.39						
0.07	2.88	0.05						
		0.04						
0.07	0.17							
0.07	2.14							
100.87	87.08	100.03						
	L: Mn- an 13 12.64 0.20 0.27 4.93 82.63 0.07 0.07 0.07 0.07 100.87	Liquid Separation str Mn- and Fe-phases in brow 3a* 13 14 12.64 0.19 0.20 0.27 0.27 0.26 4.93 78.04 82.63 3.39 0.07 2.88 0.07 0.17 0.07 2.14 100.87 87.08						

Note. * - analyzed areas of aggregates shown in Fig. 3a, c; analysis numbers correspond to point numbers in Fig. 3a, c.

Table 4. Chemical composition of hollandite from manganese horizon of the weathering crust of sideritic carbonatites from the Seis Lagos deposit (Giovannini et al., 2017) (wt.%)

Component	13.01	13.02	15.01	15.02	15.03	15.04	15.05	17.01
K ₂ O	0.07	0.05	0.01	0.11	0.07	0.08	0.16	0.19
BaO	17.22	14.66	17.59	16.88	16.43	15.94	16.52	14.62
PbO	0.03	0.20		0.04				0.13
MnO	6.46	6.50	2.72	7.15	7.05	6.53	7.35	6.66

MnO ₂	70.99	75.89	67.47	73.24	73.30	73.73	73.51	75.74
Al_2O_3	1.10	0.43	2.22	0.72	0.46	0.50	0.40	0.17
Fe ₂ O ₃	1.82	0.18	8.72	0.58	0.62	1.24	0.31	0.38
Total	97.69	97.91	98.73	98.72	97.93	98.02	98.24	97.89

 Table 5. Chemical analyses of carbonated (siderite) laterite weathering crusts based on 10-m group samples of borehole 3665 (Tomtor ore field)

Analysis No.	SiO ₂	TiO ₂	Al ₂ O ₃	FeO	Fe ₂ O ₃	MnO	MgO	CaO	K ₂ O	Na ₂ O	P ₂ O ₅	SO ₃	CO ₂	LOI	Total
1	0.80	0.67	7.00	4.75	25.87	15.80	0.50	3.00	0.05	0.08	2.98	7.10	19.15	9.70	97.45
2	1.60	0.16	0.10	12.29	3.52	30.30	1.75	9.12	0.05	0.08	2.58	0.01	27.88	4.09	93.53
3	3.60	0.67	0.10	14.09	3.88	21.60	1.87	1.00	0.05	0.08	3.75	0.01	22.72	8.49	81.91

Table 6. Results of microanalysis of Nb-rutile of the first generation (an. 2–9) and the second generation (an. 1, 10–12) Tomtor array (wt.%)

Component	1	2	3	4	5	6	7	8	9	10	11	12
Al ₂ O ₃	0.16	0.05	0.06	0.06	н.о.	0.21	0.88	1.58	0.12	0.17	0.20	0.20
SiO ₂	0.53	0.42	0.54	0.29	0.40	0.53	0.24	0.45	0.41	1.12	0.98	0.90
TiO ₂	60.14	78.66	80.69	81.90	79.29	69.24	74.60	60.80	66.41	53.41	47.16	47.36
V_2O_3	1.29	1.28	0.84	1.44	1.06	1.51	0.97	1.27	2.50	1.64	1.58	2.03
Fe ₂ O ₃	6.61	4.78	4.84	3.55	4.82	3.91	3.07	3.10	4.45	7.15	9.03	8.10
Nb ₂ O ₅	28.96	14.59	13.59	13.49	15.34	17.01	10.38	12.19	17.64	30.17	37.12	30.21
Total	97.66	99.78	100.52	100.72	100.91	92.41	90.15	79.39	93.06	93.67	96.07	89.80

Note. The amounts of some analyses (8–10) are significantly lower than 100%, since minerals contain additional Na₂O - 0.21, CaO - 0.17, P₂O₅ - 0.33, MnO - 0.09, BaO - 0.30, Y₂O₃ - 0.34, Sc₂O₃ - 0.09 wt.%; SrO, Ta₂O₅ - not detected.

Table 7. Chemical composition of Nb-rich rutile from the weathering crusts of sideritic carbonatites from the SeisLagos deposit (Giovannini et al., 2017) (wt.%)

Component	4.1	6.1	6.2	6.3	6.4	6.5	12.1	34.1	34.2	34.3	34.4	34.5
Fe ₂ O ₃	8.96	12.18	13.94	11.12	14.95	10.52	17.78	14.92	11.64	11.67	11.18	12.43
SiO ₂		1.09	0.45	0.63	0.62	0.52	1.00	0.33	0.27	0.34	0.30	0.28
TiO ₂	80.92	70.73	68.92	72.45	66.26	74.08	57.84	58.26	67.34	68.66	66.92	57.86
Nb ₂ O ₅	11.26	16.59	19.08	16.71	18.89	14.89	22.23	25.46	19.16	17.47	20.28	27.61
WO ₃	0.16	0.35	0.31	0.70	0.33	0.64	1.27	0.20	0.33	0.19	0.85	0.62
Total	101.30	100.94	102.70	101.61	101.05	100.65	100.12	99.17	98.74	98.33	99.53	98.80

Table 8. Chemical composition of Nb-rich brookite from the weathering crusts of sideritic carbonatites from the Seis

 Lagos deposit (Giovannini et al., 2017)

Component	10.1	10.2	10.3	12.1	12.2
Fe ₂ O ₃	12.08	12.53	9.86	10.89	10.69
SiO ₂	0.97	1.24	0.64	0.72	0.78
TiO ₂	69.60	73.45	76.68	76.93	78.02
Nb ₂ O ₅	16.03	12.09	11.77	10.75	10.43
WO ₃	0.69	0.32	0.74	1.10	0.80
Total	99.37	99.63	99.69	100.39	100.72

Table 9. Chemical composition (EPMA) of vanadium compounds (Tomtor, wt.%)

Component	1	2	3	4	5
V ₂ O ₅	19.08				
V_2O_3		10.93	11.14	15.39	15.85
PbO	49.67			0.19	0.05
Fe ₂ O _{3tot}		54.95	53.28	51.54	49.18
FeO	4.51				
Nb ₂ O ₅	0.55	8.24	5.34	3.41	5.19
Al_2O_3	2.4	1.86	2.10	2.76	1.93
SiO_2	4.47	3.03	3.21	3.82	3.40
TiO_2	2.38	3.32	4.05	3.84	3.36
BaO	0.49	0.50	0.20		
SrO	0.57				
P_2O_5	1.42				
SO_3	4.85	3.88	3.88	1.54	1.91
Total	90.39	86.68	83.21	82.49	80.37
		1			1

Table 10. Distribution of manganese in the hypergenic complex by wells of the Severny part of Tomtor ore field

Drilling well No.	Thickness, m	Average content MnO, %
101	28.4	11.71
105	110	13.75
108	40	10.58
111	13	12.25
3665	30	22.57
4465	70	12.72
Average by wells	48.6	12.83

Table 11. Forecast resources of manganese oxide in laterite weathering crusts of the Severny section of the Tomtor ore field

The area of the	Average ore capacity, m	Ore	Volume	Ore	Average	Ore
ore-bearing site,		volume,	weight of ore,	volume,	content of	resources,
thous. m ²		mln m ³	t/m ³	mln t.	MnO in ore, %	mln t.
1550.6	23	35.7	3.8	135.5	12.83	17.4

Table 12. Weathering crust deposits of carbonatites

Deposit	Type of	Type of ore	Ore component	Average
	deposit;			component
D 1 1 1 1	substrate*			content, %
Beloziminskoe,	Hydrosluidic	Apatite-pyrochlore in hydrosluidic	Nb_2O_5	0.5
Russia	crust; K, AK	ochres and loose particles	P_2O_5	6.4-11.74
Novopoltavskoe,	The same;	The same	Nb_2O_5	0.32
Ukraine	K, D, DC		P_2O_5	9.0
l atarskoe I,	The same; A	The same	ND_2O_5	0.61
Kussia			P ₂ O ₅	8.2
			bydrosluda	50.0
Aniico Brazil	The same K	Apatite with vermiculite in	P.O.	15 /
Alijico, Diazli	The same, K	hydrosluidic ochres	1 205	13.4
Tatarskoe II	Laterite	Pyrochlore in laterite ochres	NhaOr	1 2_2 5
Russia	crust: A	Francolites in limonite-francolite rocks	P_2O_5	23.7
Chuktukon	The same	Pyrochlore-monazite-florencite in	Nh2O5	1 0-1 48
Russia	К АК	laterite ochres	P_2O_5	5.0
	1,111		Y_2O_3	0.23-0.34
			1205	0.20 0.01
		Francolites in limonite-francolite rocks	P_2O_5	13.75
Kovdor, Russia	Laterite	Apatite-francolite	P_2O_5	15-20
	crust; K	•		
Arasha (Bareiro),	The same; D	Pyrochlore with barite in laterite ochres	Nb ₂ O _{5;}	2.5;
Brazil			BaSO ₄	20.67
		Monazite in laterite ochres	TR_2O_3	13.5
		Francolites in limonite-francolite rocks	P_2O_5	15.01
Catalan I, Brazil	The same;	Pyrochlore in laterite ochres	Nb ₂ O ₅	1.51
	К, D	Phosphate	P_2O_5	7.96
		Rare earths	TR_2O_3	12.2
		Titanium	TiO ₂	19.9
Catalan II, Brazil	The same;	Pyrochlore in laterite ochres	Nb ₂ O ₅	2.18
	K, D			
Ceish Lagos,	The same; A	Ti–Nb-ores with Nb-rutile and Nb-	Nb ₂ O ₅	2.81
Brazil		brookite in ochres	TiO ₂	12.0
		Hollandite in the surface facies of the	MnO ₂	26.0
		crust		(1.(
		Including the rich	E. O	01.0
Mana da Camata	The server IC	A patita francalita	Fe_2O_3	80.0
(Brazil)	The same; K	Apatite-francoite	P ₂ O ₅	29
Bingo Zaire	The same: K	Pyrochlore in laterite ochres	NhaOs	2.86
Luesh Zaire	The same.	Pyrochlorite in ochre-clay weathering	Nb2O5	1 34
Lucsii, Laite	K, CK	products	110205	1.57
Mrima, Kenya	The same;	Pyrochlore-monazite in laterite ochres	Nb ₂ O ₅	0.7
	K, D	-	TR_2O_3	5.0

Mabouni, Gabon	The same; K, D	Pyrochlore in laterite ochres	Nb ₂ O ₅	1.5
Sokli,	The same; K	Francolite with pyrochlore in limonite-	P_2O_5	17.8
Finland		francolite rocks	ND_2O_5 TR ₂ O ₂	0.46
Mount Weld,	The same; K	Pyrochlore in laterite ochres	Nb ₂ O ₅	1.86
Australia			Ta ₂ O ₅	0.034
	The same; A	Monazite in laterite ochres	TR ₂ O ₃	11.2
			including the rich	
			TR_2O_3	23.6
			Y_2O_3	0.33
Tomtor, Russia	Epigenetical	Crandallite-monazite pyrochlorite in	Nb ₂ O ₅	4.93
	ly altered	epigenetically altered ochres	TR_2O_3	12.8
	laterite		Y_2O_3	0.87
	cortex		Sc_2O_3	0.06
	(Buranny		V_2O_5	1.0
	site); LO		SrO	3.9
			TiO ₂	7.0
	Latarita	Manaaita namaahlanita in latanita ashma		0714
	Laterite	Monazite-pyrochiorite in laterite ochres	ND ₂ O ₅	0.7 - 1.4
	crusts		$1 \text{K}_2 \text{O}_3$	4.4
	(deposit as a	Description Construction Francis		0.6
	whole); K,	Pyrocniore-francolite in limonite-	IND ₂ U ₅	0.0
	AK, A	francolite rocks	P_2O_5	14-20

Note. *Rocks undergoing weathering or reductive epigenesis: K - calcitic, A - ankeritic, AK - ankerite-calcitic, D - dolomitic, DK - dolomite-calcite carbonatite, F - sideritic ferrocarbonatite, SK - syenite-carbonatite, LO - lateritic ochres. The table uses overview summary works "Deposits of carbonatite weathering crust" (Lapin and Tolstov 1995). "Minerageny of the weathering crust of carbonatites" (Lapin and Tolstov 2011), as well as original sources on individual deposits given in these summary works.