Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.145.58.90
    [SESS_TIME] => 1732196212
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 844bc1f8cb21f4bdfac33f9a42f27645
    [UNIQUE_KEY] => 5fcffe2c0e4ce52e0c2e58327f795196
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Журнал структурной химии

2012 год, номер 3

Prediction of Monomer Reactivity Parameters using quantum chemical descriptors

X.L. Yu1, Z.D. Tan2, X.Y. Wang3
1 College of Chemistry and Chemical Engineering, Hunan Institute of Engineering Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry
2 College of Chemistry and Chemical Engineering, Hunan Institute of Engineering
3 Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry
yxliang5602@sina.com.cn
Ключевые слова: artificial neural network, density functional theory, monomer, radical copolymerization, QSPR, quantum chemical descriptors
Страницы: 449-544

Аннотация

To construct artificial neural network (ANN) models for the prediction of reactivity parameters (u, v), density functional theory (DFT) calculations are carried out for 55 vinyl monomers, at the B3LYP level of theory with a 6-31G(d) basis set. After the generation of quantum chemical descriptors, the stepwise multiple linear regression (MLR) analysis and the ANN method are used to develop quantitative structure-property relationship (QSPR) models of parameters u and v. The ANN models produced test set root-mean-square (rms) errors of 0.35 for the parameter u and 0.34 for the parameter v. Research results indicate that the QSPR models based on DFT calculations and ANN techniques are accurate and possess the ability to generalize.