Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 18.217.208.220
    [SESS_TIME] => 1732349650
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 5e08aa77ac803ad25b0297459a51b543
    [UNIQUE_KEY] => 9f6a4f6e813b022d7b10111241a2dc65
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2013 год, номер 2

Сверхсходимость и апостериорные оценки ошибки смешанных методов Равьяра —Тома порядка 1 для эллиптических задач управления с интегральным ограничением

Т. Хоу
Hunan Key Laboratory for Computation and Simulation in Science and Engineering Department of Mathematics Xiangtan University, Xiangtan 411105, Hunan, P.R.China
htlchb@163.com
Ключевые слова: эллиптические уравнения, задачи оптимального управления, сверхсходимость, апостериорные оценки ошибки, смешанные методы конечных элементов, постобработка
Страницы: 185-199

Аннотация

В данной статье мы исследуем свойство сверхсходимости и апостериорные оценки ошибки смешанных методов конечных элементов для линейной эллиптической задачи управления с интегральным ограничением. Состояние и сопряженное состояние аппроксимируются при помощи пространств смешанных конечных элементов Равьяра-Тома порядка k=1, а переменная управления аппроксимируется кусочно-постоянными функциями. Аппроксимации оптимального управления непрерывной задачи оптимального управления будут построены путем проектирования дискретного сопряженного состояния. Доказывается, что эти аппроксимации имеют порядок сходимости h2. Кроме того, мы получаем апостериорные оценки ошибки как для переменной управления, так и для переменных состояния. И, наконец, для демонстрации наших теоретических результатов приводится численный пример.