Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.136.26.156
    [SESS_TIME] => 1732349426
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 617762ddd1a0618ab0d112db98878d70
    [UNIQUE_KEY] => 2a36c9723a10c25ef6c57d5477df6e37
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2013 год, номер 3

Регуляризация решения системы линейных алгебраических уравнений методом максимального правдоподобия

В.С. Антюфеев
Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090
ant@osmf.sscc.ru
Ключевые слова: система линейных уравнений, положительная регуляризация, вероятностное распределение, стохастический ансамбль
Страницы: 217-228

Аннотация

В статье предложен метод регуляризации, позволяющий получить неотрицательное псевдорешение системы линейных алгебраических уравнений. Доказана теорема существования наилучшего допустимого решения. Рассматриваются геометрическая интерпретация этого псевдорешения, его свойства, некоторые естественные обобщения метода.