Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 18.188.59.124
    [SESS_TIME] => 1732356527
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 7ba6d2158bf5eed47a7fffdbc2f612f9
    [UNIQUE_KEY] => fa830a61f5ecb316770ffaf62ac81eab
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Прикладная механика и техническая физика

1977 год, номер 5

Вязкость разбавленной суспензии жестких сферических частиц в неньютоновской жидкости

Ю. И. Шмаков, Л. М. Шмакова
Киев
Страницы: 81-85

Аннотация

Получено выражение для эффективной вязкости разбавленной суспензии жестких сферических частиц с аномально-вязкой дисперсионной средой (степенной жидкостью), мало отличающейся от ньютоновской жидкости. Это выражение является обобщением известной формулы Эйнштейна на рассматриваемый случай.