Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 18.191.192.109
    [SESS_TIME] => 1732195932
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 75821b87c45de114a50fac53e65910e0
    [UNIQUE_KEY] => 6f493dab6c5e4966c515270942dfccee
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Журнал структурной химии

2015 год, номер 2

QSAR STUDY OF FLAVONOID–METAL COMPLEXES AND THEIR ANTICANCER ACTIVITIES

J.-Z. Qian1, B.-C. Wang1, Y. Fan2, J. Tan3, X. Yang4
1Bioengineering College, Chongqing, China
wangbc2000@126.com
2Chongqing Telecom Planning and Designing Institute Co., Ltd, Chongqing, China
3Chongqing University of Education, Chongqing, China
4Chongqing Normal University, Chongqing, China
Ключевые слова: flavonoi-dmetal complexes, quantum chemistry descriptors, anticancer, artificial neural network (ANN), quantitative structure-activity relationship (QSAR)
Страницы: 353-360
Подраздел: СТРУКТУРА БИОЛОГИЧЕСКИ АКТИВНЫХ СИСТЕМ

Аннотация

Flavonoid-metal complexes have anticancer activities. However, the quantitative structure-activity relationship (QSAR) of flavonoid-metal complexes and their anticancer activities has not been known so far. Based on the 14 structures of flavonoid-metal complexes and their anticancer activities for HepG2 from the references, we optimised their structures using the density functional theory (DFT) method, and subsequently calculated 19 quantum chemical descriptors, such as dipole, charge, and energy. Then, we chose several quantum chemical descriptors that are very important for IC50 which represents the anticancer activities of flavornoid-metal complexes for HepG2 through the stepwise linear regression method. Meanwhile, we obtained six new variables through the principal component analysis. Finally, we built QSAR models based on those important quantum chemical descriptors, six new variables as independent variables, and IC50 as a dependent variable using an artificial neural network (ANN). At last, we validated the models using the experimental data from the references. The results show that models presented in this paper are accurate and predictive.