Первая краевая задача теории упругости для цилиндра с N цилиндрическими полостями
А.Г. Николаев, Е.А. Танчик
Национальный аэрокосмический университет им. Н.Е. Жуковского, ул. Чкалова, 17, Харьков, Украина, 61070 k405@d4.khai.edu
Ключевые слова: краевая задача, многосвязное тело, обобщенный метод Фурье, разрешающая система, цилиндрическая граница, теоремы сложения
Страницы: 177-189
Аннотация
Предложен эффективный метод аналитико-численного решения неосесимметричной краевой задачи теории упругости для многосвязного тела в виде цилиндра с N цилиндрическими полостями. Решение строится в виде суперпозиции точных базисных решений уравнения Ламе для цилиндра в системах координат, отнесенных к центрам граничных поверхностей тела. Граничные условия задачи удовлетворяются точно при помощи аппарата обобщенного метода Фурье. В результате исходная задача сводится к бесконечной системе линейных алгебраических уравнений, оператор которой является фредгольмовым в гильбертовом пространстве
l2. Разрешающая система решается численно методом редукции. Исследована практическая скорость сходимости метода редукции. Проведен численный анализ напряжений в зонах их наибольшей концентрации. Достоверность результатов подтверждается сравнением их для двух случаев: цилиндра с шестнадцатью и с четырьмя цилиндрическими полостями.
DOI: 10.15372/SJNM20150206 |