Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 18.222.166.127
    [SESS_TIME] => 1732195728
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 3b154e400ad22a4d590a1fee1d586643
    [UNIQUE_KEY] => 22dabd2c96b3ad58ddecf1e5f7d1d33b
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2015 год, номер 3

Интерполяция Лагранжа и формулы Ньютона-Котеса для функций с погранслойной составляющей на кусочно-равномерных сетках

А.И. Задорин
Институт математики Сибирского отделения Российской академии наук, ул. Певцова, 13, Омск, 644099
zadorin@ofim.oscsbras.ru
Ключевые слова: функция одной переменной, пограничный слой, большие градиенты, сетка Шишкина, интерполяция Лагранжа, формула Ньютона-Котеса, оценка погрешности
Страницы: 289-303

Аннотация

Исследуется вопрос интерполяции функции одной переменной, соответствующей решению краевой задачи для уравнения с малым параметром ε при старшей производной. Применение многочлена Лагранжа на равномерной сетке для интерполяции такой функции может привести к значительным погрешностям. Получены ε-равномерные оценки погрешности интерполяции многочленом Лагранжа на сетке Шишкина. Приведена модификация сетки Шишкина, повышающая точность интерполяции. Получены ε-равномерные оценки погрешности формул Ньютона-Котеса на таких сетках. Проведены численные эксперименты, результаты которых согласуются с теоретическими оценками.

DOI: 10.15372/SJNM20150304