Анализ точности оценок первых моментов решения СДУ с винеровской и пуассоновской составляющими методом Монте-Карло
С.С. Артемьев, М.А. Якунин
Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090 ssa@osmf.sscc.ru
Ключевые слова: стохастические дифференциальные уравнения, винеровская и пуассоновская составляющие, метод Монте-Карло, обобщенный метод Эйлера, ансамбль траекторий, шаг интегрирования, оценки моментов, stochastic differential equations, Wiener and Poisson components, Monte Carlo method, generalized Euler method, ensemble of trajectories, integration step, estimates of moments
Страницы: 33-45
Аннотация
В работе исследуется точность оценок первых моментов численного решения СДУ с винеровской и пуассоновской составляющими обобщенным явным методом Эйлера. Для тестового СДУ получены точные выражения математического ожидания и дисперсии решения, сравнение с которыми позволяет исследовать зависимость точности оценок, полученных методом Монте-Карло, от значений параметров СДУ, размеров шага интегрирования и ансамбля моделируемых траекторий решения. Приводятся результаты численных экспериментов.
DOI: 10.15372/SJNM20160103 |