Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.135.205.26
    [SESS_TIME] => 1732349437
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 9a34cd35b90c5b79215913dbf2c5d062
    [UNIQUE_KEY] => 60b8f5863d92b0c1136856c2ecceb48a
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Журнал структурной химии

2016 год, номер 8

STRUCTURAL CHARACTERIZATION AND PREDICTION OF KOVATS RETENTION INDICES (RI) FOR ALKYLBENZENE COMPOUNDS

L.-M. Liao1,2, J.-F. Li1,2, G.-D. Lei1
1Neijiang Normal University, Neijiang, Sichuan, P. R. China
leigdnjtc@126.com
2Chongqing University, Chongqing, P. R. China
Ключевые слова: alkylbenzene, retention index, structural descriptors, QSRR
Страницы: 1625-1632

Аннотация

A new molecular structural characterization (MSC) method called the molecular vertex eigenvalue correlative index (MVECI) is constructed and used to describe the structures of 122 alkylbenzene compounds. Through multiple linear regression (MLR) and stepwise multiple regression (SMR), a quantitative structure-retention relationship (QSRR) model with correlation coefficient ( R ) of 0.995 is obtained. Through partial least-square regression (PLS), another QSRR model with correlation coefficient ( R ) of 0.991 is obtained. The estimation stability and prediction ability of the two models are strictly analyzed by both internal and external validations. For the internal validation, the cross-validation (CV) correlation coefficients ( R CV) of the two models are 0.993 and 0.988. For the external validation, the correlation coefficients ( R test) of the two models are 0.996 and 0.995, respectively. The results show that the stability and predictability of the models are good, and the molecular vertex eigenvalue correlative index can successfully describe the structures of alkylbenzene compounds.

DOI: 10.15372/JSC20160806