Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 18.191.44.145
    [SESS_TIME] => 1736932559
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 9d470d2677126ecc593844c2245c739b
    [UNIQUE_KEY] => a08e04106f33299f959ef899d6d282b4
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2017 год, номер 1

Модифицированная схема двойственности для решения упругой задачи с трещиной

Р.В. Намм, Г.И. Цой
Вычислительный центр Дальневосточного отделения Российской академии наук, ул. Ким Ю Чена, 65, Хабаровск, 680000
rnamm@yandex.ru
Ключевые слова: упругая задача с трещиной, схема двойственности, модифицированный функционал Лагранжа, функционал чувствительности, соотношение двойственности, слабая полунепрерывность снизу, elastic crack problem, duality scheme, modified Lagrangian functional, sensitivity functional, duality relation, weak lower semicontinuity
Страницы: 47-58

Аннотация

Рассматривается схема двойственности для решения задачи с трещиной в перемещениях. Двойственный метод решения основан на модифицированном функционале Лагранжа. При этом сходимость метода исследуется при естественном предположении об H1 регулярности решения задачи с трещиной. Доказывается соотношение двойственности для исходной и двойственной задач.

DOI: 10.15372/SJNM20170105