О существовании цикла в одной несимметричной модели молекулярного репрессилятора
Н.Б. Аюпова1,2, В.П. Голубятников1,2, М.В. Казанцев3
1Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук, просп. Акад. Коптюга, 4, Новосибирск, 630090 ayupova@math.nsc.ru 2Новосибирский национальный исследовательский государственный университет, ул. Пирогова, 2, Новосибирск, 630090 golubyatn@yandex.ru 3Алтайский государственный технический университет им. И.И. Ползунова, пр. Ленина, 46, Барнаул, 656038 markynaz.astu@gmail.com
Ключевые слова: нелинейная динамическая система, модели генных сетей, дискретизация фазового портрета, гиперболические стационарные точки, циклы, теорема Брауэра о неподвижной точке, nonlinear dynamical systems, gene networks models, phase portrait's discretization, hyperbolic equilibrium points, cycles, Brower's fixed point theorem
Страницы: 121-129
Аннотация
Рассматривается нелинейная шестимерная динамическая система, моделирующая функционирование простейшего молекулярного репрессилятора. Установлены условия существования цикла в ее фазовом портрете, построена ретрагирующаяся на его инвариантная окрестность.
DOI: 10.15372/SJNM20170201 |