Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.143.237.140
    [SESS_TIME] => 1732194834
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => b15242cdf1f3a38c8f4c6ff98142ffb7
    [UNIQUE_KEY] => dc98a74762747dae47c67603f5bad069
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2018 год, номер 3

Анализ формул численного дифференцирования на сетке Шишкина при наличии пограничного слоя

А.И. Задорин
Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук, пр. Акад. Коптюга, 4, Новосибирск, 630090
zadorin@ofim.oscsbras.ru
Ключевые слова: функция одной переменной, пограничный слой, формула численного дифференцирования, сетка Шишкина, оценка погрешности, one-variable function, boundary layer, numerical differentiation formula, Shishkin mesh, error estimate
Страницы: 243-254

Аннотация

Исследуется вопрос численного дифференцирования функций с большими градиентами в пограничном слое. Проблема в том, что в случае функций с большими градиентами и равномерной сетки относительная погрешность классических разностных формул для производных может быть значительной. Предлагается использовать сетку Шишкина, чтобы относительная погрешность формул не зависела от малого параметра. Получены оценки погрешности, зависящие от числа узлов разностной формулы для производной задаваемого порядка. Доказано, что оценка погрешности равномерна по малому параметру. В случае равномерной сетки выделена область пограничного слоя, вне которой формулы численного дифференцирования обладают погрешностью, равномерной по малому параметру. Приведены результаты численных экспериментов.

DOI: 10.15372/SJNM20180301