Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 18.223.43.106
    [SESS_TIME] => 1732192428
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => d3880661d9ff17dd18ec4f1e74dea18c
    [UNIQUE_KEY] => 6cd475f79414e0bc66329661cd5e1d14
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2019 год, номер 1

Стохастический ансамблевый фильтр Калмана с трансформацией ансамбля возмущений

Е.Г. Климова
Институт вычислительных технологий Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090
klimova@ict.nsc.ru
Ключевые слова: усвоение данных, ансамблевый фильтр Калмана, data assimilation, Kalman ensemble filter
Страницы: 27-40

Аннотация

Алгоритм фильтра Калмана является в настоящее время одним из самых популярных подходов к решению задачи усвоения данных наблюдений. Лидирующим направлением в работах, посвященных применению фильтра Калмана при усвоении данных, является ансамблевый подход. В статье рассматривается вариант стохастического ансамблевого фильтра Калмана. В данном алгоритме ансамбль ошибок анализа получается с помощью трансформации ансамбля ошибок прогноза, шаг анализа осуществляется только для среднего значения. Таким образом, ансамблевый π-алгоритм объединяет в себе преимущества стохастического фильтра и экономичность и локальность фильтров квадратного корня. Предложен численный метод реализации ансамблевого π-алгоритма, приводится обоснование применимости этого метода. Алгоритм реализован на примере трехмерной тестовой задачи, приводятся результаты численных экспериментов с модельными данными по оценке эффективности предлагаемого численного алгоритма. Проводится сравнительный анализ поведения среднеквадратической ошибки ансамблевого π-алгоритма и классического ансамблевого фильтра Калмана с помощью численных экспериментов с 1-мерной моделью Лоренца.

DOI: 10.15372/SJNM20190103