(m, k)-схемы решения дифференциально-алгебраических и жестких систем
А.И. Левыкин1,2, А.Е. Новиков3, Е.А. Новиков3,4
1Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия lai@osmf.sscc.ru 2Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия 3Сибирский федеральный университет, Красноярск, Россия aenovikov@bk.ru 4Институт вычислительного моделирования Красноярского научного центра Сибирского отделения Российской академии наук, Красноярск, Россия novikov@icm.krasn.ru
Ключевые слова: методы типа Розенброка, дифференциально-алгебраические уравнения, жесткие системы ОДУ, Rosenbrock-type methods, differential-algebraic equations, stiff systems of ODEs
Страницы: 39-51
Аннотация
В статье представлена оптимальная форма записи методов типа Розенброка с точки зрения числа ненулевых параметров и вычислительных затрат на шаге. Обоснована процедура получения ( m, k )-методов из общеизвестных методов типа Розенброка. Приведены формулы преобразования параметров ( m, k )-схем для двух канонических форм записи и нахождения вида функции устойчивости схем. Разработан L -устойчивый (3, 2)-метод третьего порядка, для которого требуются два вычисления функции, одно вычисление матрицы Якоби и одна LU -декомпозиция на шаге. На базе метода сформулирован алгоритм интегрирования переменного шага, позволяющий решать как явные, так и неявные системы ОДУ. Приведены численные результаты, подтверждающие эффективность нового алгоритма.
DOI: 10.15372/SJNM20200103 |