Разностная схема для одномерных уравнений Максвелла
А.Ф. Мастрюков
Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, Новосибирск, Россия maf@omzg.sscc.ru
Ключевые слова: конечно-разностный, оптимальный, точность, метод Лагерра, электромагнитные, система линейных уравнений, итерации, finite difference, optimal, accuracy, Laguerre method, electromagnetic, linear equations system, iterations
Страницы: 69-82
Аннотация
В работе рассматривается разностная схема 2-го порядка аппроксимации для одномерных уравнений Максвелла с использованием преобразовании Лагерра. В эту разностную схему вводятся дополнительные параметры. Эти параметры получаются минимизацией погрешности разностной аппроксимации уравнения Гельмгольца. Значения этих оптимальных параметров не зависят от шага и числа узлов разностной схемы. Показано, что применение разложения Лагерра позволяет получить более высокую точность аппроксимации уравнений в сравнении с подобными же разностными схемами при использовании разложения Фурье. Разностная схема 2-го порядка с параметрами сравнивалась с разностной схемой 4-го порядка в двух случаях. При решении задачи распространения электромагнитного импульса в неоднородной среде использование оптимальной разностной схемы дает точность решения, сравнимую с точностью решения разностной схемой 4-го порядка. При решении обратной задачи разностная схема 2-го порядка позволяет получить более высокую точность решения, чем разностная схема 4-го порядка. В рассмотренных задачах применение разностной схема 2-го порядка с дополнительными параметрами сокращало время счета задачи на 20-25 % в сравнении разностной схемой 4-го порядка.
DOI: 10.15372/SJNM20200105 |