Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 18.218.27.145
    [SESS_TIME] => 1736945151
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => 3078ec2f12159817c5577675fbc7a68c
    [UNIQUE_KEY] => 6d31507994774112bf90abeffddb4de0
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Сибирский журнал вычислительной математики

2022 год, номер 2

Алгоритм численного решения системы уравнений Прандтля с индуцированным давлением в периодическом случае

Р.К. Гайдуков
Национальный исследовательский университет «Высшая школа экономики», Москва, Россия
roma1990@gmail.com
Ключевые слова: двухпалубная структура, осреднение, уравнения Прандтля с индуцированным давлением, периодические возмущения, численное моделирование
Страницы: 97-109

Аннотация

Рассмотрено течение вязкой жидкости вдоль полубесконечной пластины с малыми периодическими неровностями на поверхности при больших значениях числа Рейнольдса. Течение вблизи пластины описывается уравнениями Прандтля с индуцированным давлением, которые не являются классическими уравнениями в частных производных, поскольку содержат предельный член. Основная цель данной работы - построение алгоритма численного решения этих уравнений с периодическими граничными условиями. Приведены результаты численного моделирования течения.

DOI: 10.15372/SJNM20220201
Добавить в корзину
Товар добавлен в корзину