Издательство СО РАН

Издательство СО РАН

Адрес Издательства СО РАН: Россия, 630090, а/я 187
Новосибирск, Морской пр., 2

soran2.gif

Baner_Nauka_Sibiri.jpg


Яндекс.Метрика

Array
(
    [SESS_AUTH] => Array
        (
            [POLICY] => Array
                (
                    [SESSION_TIMEOUT] => 24
                    [SESSION_IP_MASK] => 0.0.0.0
                    [MAX_STORE_NUM] => 10
                    [STORE_IP_MASK] => 0.0.0.0
                    [STORE_TIMEOUT] => 525600
                    [CHECKWORD_TIMEOUT] => 525600
                    [PASSWORD_LENGTH] => 6
                    [PASSWORD_UPPERCASE] => N
                    [PASSWORD_LOWERCASE] => N
                    [PASSWORD_DIGITS] => N
                    [PASSWORD_PUNCTUATION] => N
                    [LOGIN_ATTEMPTS] => 0
                    [PASSWORD_REQUIREMENTS] => Пароль должен быть не менее 6 символов длиной.
                )

        )

    [SESS_IP] => 3.145.100.40
    [SESS_TIME] => 1734843285
    [BX_SESSION_SIGN] => 9b3eeb12a31176bf2731c6c072271eb6
    [fixed_session_id] => a0859be54eaa7e47aee541952aa14d9b
    [UNIQUE_KEY] => 33da8a7bf1bf2af6907b0772f65abd23
    [BX_LOGIN_NEED_CAPTCHA_LOGIN] => Array
        (
            [LOGIN] => 
            [POLICY_ATTEMPTS] => 0
        )

)

Поиск по журналу

Теплофизика и аэромеханика

2023 год, номер 5

Основанная на OpenFOAM оценка различных способов учета стенки при моделировании отрывных потоков вокруг плохо обтекаемых тел с теплообменом

К. Чакраборти1, С. Сароха1, Саван С. Синха1, С. Лакшмипати2
1Индийский технологический институт, Дели, Индия
krishnendu.bukai@gmail.com
2Компания Gexcon AS, Берген, Норвегия
l.sunil@gmail.com
Ключевые слова: k-e-модель, отрывные течения, учет стенки, теплообмен, пакет OpenFOAM, k-e-модель Лаундера - Шармы, RANS-метод
Страницы: 879-902

Аннотация

В работе оценивается влияние способа учета стенки на точность воспроизведения с помощью κ-ε-модели несжимаемых турбулентных отрывных течений с теплообменом и без него. С использованием пакета OpenFOAM вычислительной динамики жидкости и газа (CFD) с открытым исходным кодом моделировались два эталонных случая: обтекание круглого цилиндра при Re = 3900 и обтекание нагретого квадратного цилиндра при Re = 21400. Выполнено сравнение результатов, полученных с помощью трех вариантов κ-ε -модели - κ-ε -модели Лаундера - Шармы (LSKEY), κ-ε -модели Лэма - Бремхорста (обе - с поправкой Япа) (LBKEY) и двухслойной κ-ε -модели (TLKE), с данными экспериментов и прямого численного моделирования (DNS). Цель cравнения - определение способности модели предсказывать осредненные характеристики потока, интегральные величины на поверхности и характеристики теплообмена в различных точках следа. На основании представленного исследования сделан вывод, что модель LSKEY работает лучше других моделей при воспроизведении характеристик течения и теплообмена в следе и на поверхности. Кроме того, сравнение показало, что модели LSKEY и LBKEY требуют сравнимых затрат компьютерного времени на проточный цикл, а вычислительное время, необходимое для модели TLKE, почти в два раза превышает время, трбуемое для проведения расчетов по моделям LBKEY и LSKEY. Полученные результаты призваны привлечь внимание к модели LSKEY со стороны специалистов в области CFD. В частности, эта модель может быть использована при расчетах течений в других подходах, особенно в методах с разрешением масштабов, например, при решении уравнений Навье - Стокса с частичным осреднением (PANS), где оптимальный способ учета стенки наряду с более коротким временем счета мог бы дать значительное преимущество. По мнению авторов, эти преимущества модели LSKEY ранее в значительной степени упускались из виду, возможно, из-за предвзятого предпочтения ей модели TLKE, которая по умолчанию присутствует в популярных коммерческих CFD-пакетах.
Добавить в корзину
Товар добавлен в корзину